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ABSTRACT
Support Vector Machines (SVMs) are an effective, adapt-
able and widely used method for supervised classification.
However, training an SVM classifier on large-scale prob-
lems is proven to be a very time-consuming task for soft-
ware implementations. This paper presents a scalable high-
performance FPGA architecture of Gilbert’s Algorithm on
SVM, which maximally utilizes the features of an FPGA
device to accelerate the SVM training task for large-scale
problems. Initial comparisons of the proposed architecture
to the software approach of the algorithm show a speed-up
factor range of three orders of magnitude for the SVM train-
ing time, regarding a wide range of data’s characteristics.

1. INTRODUCTION

In Machine Learning, classification is the task of match-
ing inputs to one predefined category. In the case of a su-
pervised problem, the machine needs to know the training
data’s classes a priori. Among supervised learning meth-
ods, the most popular are Neural Networks, Linear Discrim-
inant Analysis, Support Vector Machines, Gaussian Mixture
Models and Decision Trees.

Support vector machines [1] have been proven to be a
very effective method for supervised classification with a
wide range of applicability, offering state-of-the-art solu-
tions for numerous applications. SVMs are efficiently used
in classification tasks such as face detection and recogni-
tion [2], time series forecasting [3], medical applications and
more.

Much research has focused on the training phase of SVMs,
whose task is to train a machine using a set of training data.
The SVM training problem can be formulated as a Quadratic
Programming (QP) Problem. Due to the complexity of the
QP problem for large data sets, decomposition methods have
been proposed, such as SMO [4], SVMLIGHT [5], LIBSVM
[6] and SVMPERF [7]. Recently, a geometric-based approach
to the SVM training problem has been introduced [8], [9]
and [10], which is based on Gilbert’s Algorithm [11].

Most well known algorithms for SVM training are su-
perlinear to the size of the training data set. Thus, SVM
training is considered as a computational expensive task for
applications that require large training data sets. For in-
stance, the training time for tasks with training sizes of mil-
lions of data points, such as the Covertype data set or For-
est data set example, is in the order of days, for a single
SVM machine ([12], [13]). Moreover, in online training ap-
plications with real-time performance constraints, the use
of dedicated hardware resources could significantly accel-
erate the SVM training, especially when considering large-
scale problems. However, to the best of authors’ knowledge,
marginal research work has been focused on hardware solu-
tions to reduce SVM training time.

In this work, a geometric-based approach that employs
Gilbert’s Algorithm to the SVM training is chosen, due to its
plainness and its high parallelization potentials. An FPGA
device is targeted because of its runtime reconfigurability,
which allows the design to adapt to different types of input
data. This paper proposes a scalable architecture which fo-
cuses on maximizing the utilization of FPGA resources and
takes advantage of the special features of a modern FPGA
device in order to speed-up the SVM online training for
large scale classification problems.

The rest of this paper is organized as follows: Section
2 presents a brief description of SVM decomposition algo-
rithms, focuses on the geometric approach of Gilbert’s algo-
rithm and provides an insight to the reasons why it was cho-
sen as targeted algorithm. Section 3 includes the detailed de-
scription of the proposed FPGA architecture, while Section
4 presents the results for various implementations. Finally,
the paper concludes in section 5.

2. SVM TRAINING ALGORITHMS

2.1. Overview

The objective of SVMs is to construct a seperating hyper-
plane w · x − b = 0 to attain maximum separation between
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Fig. 1. SVM seperating hyperplane.

the classes, as shown in Fig. 1. The classes’ hyperplanes are
parallel to the separating one, lying on each side of it. The
Euclidean Distance between the two hyperplanes equals to
2/||w||, thus the objective of SVMs is to maximize the dis-
tance between the classes’ hyperplanes or, in other words, to
minimize ‖w‖:

min 1
2‖w‖2,

s.t.yi(w · xi − b) ≥ 1, 1 ≤ i ≤ n.
(1)

, where (·) denotes an inner product, xi is the training data,
yi is the belonging class taking values -1,1, w is the per-
pendicular vector to the hyperplane’s direction and b is the
offset to the origin. We are focusing on the training phase of
the algorithm, whose task is the identification of those train-
ing samples that lie closest to the margin and determine its
direction; these samples are called Support Vectors. In the
case where the data are not linearly separable, SVMs can
map the input feature space to a higher dimensional one,
by replacing every dot product x · x

′
in the algorithm by a

kernel function K(x, x
′
). In this non-linear SVM case, the

problem is transferred to a higher dimensional space, where
linear separation can be obtained.

Solving the SVM training problem by using QP tech-
niques is a demanding and computational expensive task,
especially for large high-dimensional datasets. Thus, many
algorithms have been proposed to decompose this large QP
problem into smaller ones. Sequential Minimum Optimiza-
tion (SMO) [4] solves the QP problem analytically and it
applies to linear and non-linear SVM. In each iteration, it
chooses two data points from the training set as the working
set and performs the optimization. Similar algorithms like
SVMLIGHT [5] and LIBSVM [6] are based on the same idea
of the QP problem decomposition. Their main difference is
the way the working set is chosen on each iteration. These
algorithms scale superlinearly with the size of training set.
SVMPERF [7] uses a Cutting Plane algorithm for linear SVM
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Fig. 2. Iteration steps of Gilbert’s Algorithm.

training that succeeds in scaling linearly with the number of
the samples in the training set. However, the linear behavior
regards only linear SVMs; in the non-linear case, the perfor-
mance of SVMperf worsens by a factor n, equal to the size
of training data.

2.2. Gilbert’s Algorithm on SVM

Recently, various research works [8], [9], [10] approach the
SVM training from a geometric view of the problem. These
proposed methods are based on the application of a nearest
point algorithm, Gilbert’s Algorithm [11], to the geometric
expression of the SVM training problem. According to [8],
the solution to the SVM problem is the point wk, which be-
longs to the secant convex hull’s perimeter and is closest to
the origin. Gilbert’s Algorithm locates the point of a convex
hull closest to the origin with recurring linear steps.

In [8] and [10], Gilbert’s Algorithm is applied on the
secant convex hull S = X - Y = xi - xj : yi = 1, yj = -1,
where X and Y are the convex hulls of each class of training
data, as shown in Fig. 2. It should be noted that the algorithm
does not require the explicit construction of the secant.

The algorithm’s iteration loop is illustrated in Fig. 3.
Starting from a random point wk−1, the algorithm locates
the point g∗(−wk−1), whose projection on the direction of
−wk−1 is the closest to the origin; this point will lie on the
secant’s perimeter [11]. Thus, g∗(−wk−1) is the point of S
that maximizes the inner product with wk−1. This value can
be computed by finding g∗

X and g∗
Y , which are the points xi

and xj of classes X and Y respectively that maximize the
inner products −wk−1 · xi and wk−1 · xj :

g∗(−wk−1) = g∗
X(−wk−1) − g∗Y (wk−1) (2)

The next step is to locate the next wk as in (3), which is the
point on the line segment [wk−1, g∗(−wk−1)] closest to the
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Fig. 3. Gilbert’s Algorithm flow.

origin, which may not be part of the secant.

wk =






wk−1 , if top ≤ 0,
g∗(−wk−1) , if bot ≤ top,
wk−1 + λ(g∗(−wk−1) − wk−1) , else

(3)
, where:

top = −wk−1 · (g∗(−wk−1) − wk−1)
bot = ‖g∗(−wk−1) − wk−1‖2

λ = top
bot

(4)

This algorithm’s loop iterates numerous times over the con-
vex hull’s points. The average mi of wk points is calculated
and the algorithm terminates if the angle between the lat-
est two averages is smaller than e, which is the algorithm’s
convergence tolerance and is user specified.

A cache scheme is employed to accelerate the algorithm.
The inner products −wk−1 · xi and wk−1 · xj are stored in a
cache and hence, g∗ of the next iteration is easily calculated
by the maximum values stored in the cache. The values of
the inner product cache are updated according to the value of
λ in equations (4), to reflect the new value of wk in equation
(3), as in (5).

cache = (1 − λ)cache + λ(wk−1 · x) (5)

Concluding the above analysis, several interesting char-
acteristics of the algorithm can be remarked. The iteration
loop of the algorithm and the termination criteria are easily
mapped in hardware, while there are no complicated deci-
sions for the point of the next iteration, leading to a simple to
implement control flow. The dominant mathematical func-
tions of the algorithm are the inner products and only one
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Fig. 4. Top Architecture.

division per iteration step is required. Therefore, the algo-
rithm can be implemented using fixed-point precision. The
most computational demanding step of the loop is the evalu-
ation of the cache data points, which scales linearly with the
training data size and the input’s dimensionality. However,
the inner products evaluations are independent and many
parallelization techniques can be applied to speed-up the al-
gorithm’s iteration loop.

3. FPGA MAPPING

3.1. Architecture’s Description and Considerations

As already mentioned, the most time-consuming task of the
loop in Gilbert’s Algorithm is the update of its inner product
cache. Hence, a significant step to accelerate the algorithm
is to introduce a Processing Element (PE) module, which
could segment the cache update problem into smaller ones.
Implementing the PE efficiently, with respect to the avail-
able resources of a specific FPGA device, contributes in bet-
ter utilization of the hardware resources and more PE in-
stantiations. Thus, the acceleration of the algorithm is max-
imized. This case study of the architecture refers to a DSP-
oriented FPGA. Initial exploration of the problem showed
that the main critical factor is the number of slices per PE;
thus, keeping PE’s area small will result in a larger number
of PEs fitting in the device, since DSPs and block RAMs
available resources will add softer constraints.

The proposed architecture is shown in Fig. 4. First, the
training data are downloaded to the FPGA, assuming that
the training set fits into the device’s block RAMs. In the
case where the problem is too large, chunking or clustering
methods can be applied and solve the subsets of the problem
iteratively. Then, each PE updates a segment of the inner
product cache, while at the same time evaluates the maxi-
mum inner product of its stored data. Each PE compares
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Fig. 5. Processing Element Architecture.

its max inner product with the inner product of previous PE
and propagates the result to the next one, in order to find
g∗(−wk−1). The λ value is calculated by a special mod-
ule parallel to the cache updates and is propagated through
PEs to reduce fanout and routing delays. The control unit is
responsible for the bus interface, the algorithm’s iterations
steps, as well as the storage of mi average values and the
checking of termination criteria.

To complete the investigation of the proposed architec-
ture, the rationale of some design choices should be remarked.
In order to propose an efficient design, which could take ad-
vantage of the special features of a modern FPGA device,
several issues needed to be addressed. The first decision to
make is how the machine accesses the training data. Down-
loading segments of training data into block RAMs can of-
fer significant increase of the device’s throughput and take
full advantage of the FPGA’s available bandwith, by utiliz-
ing all block RAMs in parallel. In addition, the memory
bus is relieved from sparse or sequential accesses to an ex-
ternal RAM while the algorithm’s iteration are performed.
Moreover, the allocation of data in the block RAMs is an
important issue; the FIFO scheme is the simplest to imple-
ment and offers the easiest access to data, since one extra bit
to denote the class of data is only needed. The propagation
of variables like λ and maximum kernels was kept single di-
rectional through the PEs in order not to add hard placement
constraints for the element’s instances.

3.2. Processing Element Analysis

The Processing Element of the design is shown in Fig. 5.
The PE’s data path is fully pipelined, except the two inner

product modules that operate in parallel. This inner prod-
ucts scheme has a latency of m clock cycles, where m is
the dimensionality of the data. The proposed PE architec-
ture follows a distributed control approach, in order to re-
duce routing delays of signals among PEs and keep fanout
low. Each PE has its own control unit, which is responsible
of the control signals for the pipeline as well as the memory
control. The latency of PE is dependent on the data’s dimen-
sionality and the number of DSPs used for the cache update
multiplier.

The training data are stored in block RAM, as well as the
inner products between each data point and wk−1. More-
over, the current wk−1 is kept in the two block RAMs in-
stead of using registers to minimize PE’s area. The compu-
tation of the inner product wk−1 · x is implemented with a
sustracter and one DSP. The function (5) for the cache up-
date is transformed and implemented as in (6).

cache = cache + λ(wk−1 · x − cache) (6)

The multiplier for the cache update is implemented with
DSP blocks instead of using LUTs or Hybrid Multiplier,
leading to small area utilization for the PE.

3.3. Lambda Computation Module

The module for the λ variable evaluation is shown in Fig. 6.
Lambda computation module takes as inputs wk, g∗(−wk−1)
and their inner product, which has been already computed
and stored in the inner product cache memory. All inner
products are implemented in DSPs. The divider was im-
plemented for high frequency rather than high throughput,
since the computation of λ is performed in parallel to the
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cache updates and the overall delay of this module is not
critical to the algorithm’s performance. The selected preci-
sion for λ is 18 bits for the fractional part, since λ is only
used for the cache update when: λ ∈ (0, 1). This precision
is considered sufficient in order to avoid abnormal termina-
tions or useless iterations over the same points on the same
line segment [wk−1, g∗(−wk−1)].

4. IMPLEMENTATION RESULTS

The proposed architecture was designed for a wide input
bit range and various data’s dimensionalities. The targeted
device was the Xilinx Virtex-4 XCV4VSX55-FF1148-12,
since it features a large number of DSP blocks (512), while
keeping a good ratio between DSPs and block RAMs (1.6:1).
The memory usage is 2 block RAMs/PE and the DSP usage
is 3 DSPs/PE for 4 bits/dimension and 4 DSPs/PE for 8, 10
and 12 bits/dimension. Since the RAM and DSP require-
ments per PE are kept low, the number of required slices
adds the most critical constraint and governs the potential
number of PE instantiations in the design. It should be men-
tioned that all bit-width refer to the worst-case, as if all
data’s dimensions have equal bit-range requirements.

The scaling of PE’s area with dimensionality and bit-
width is illustrated in Fig. 7. It can be concluded that PE’s
area scales linearly with data’s bit-width and dimensionality.
By fitting a linear function to the results, an expression of
required slices to data’s bit-width and dimensionality can be
obtained (7), which allows the estimation of PE’s area for
any other possible configuration.

Num. of slices = 2.1 · Dims + 3.6 · Bits + 191 (7)

Fig. 8 shows the scaling of PE’s operating frequency
with the increase of data’s bit-width and dimensionality. The
circuit’s maximum operating frequency decays with the bit-
width increase, although routing delays also affect this rela-
tion. However, it can be seen that PE’s performance remains
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satisfactorily high for various bit-widths. Moreover, Table 1
includes results for the lambda computation module for var-
ious implementations. The critical path of the architecture
is located in the division for the evaluation of λ. Neverthe-
less, this module’s performance is roughly the same to the
PE’s and does not impose any extra constraint to the overall
design. The module’s latency increases with the dimension-
ality and the precision, although its effect on the iteration’s
overall latency is negligible, since these operations are per-
formed in parallel to the inner products evaluations.

Fig. 9 illustrates the maximum possible number of PE
instantiations in the device, which is inversely proportional
to the PE’s occupied area. The number of PE’s instantia-
tions is a direct factor of the hardware’s speed-up compared
to a software implementation of the algorithm. Comparing
to the algorithm’s Matlab implementation [10] on a PC with
a 3GHz Intel CORE 2 DUO and 2GB of RAM, the pro-
posed design presents a speed-up range of 3,000-6,000 on
the algorithm’s iteration. This range regards two extreme
cases of the implementation, 8 bit precision with 5 dimen-
sions/data and 12 bit precision with 65 dimensions/data. For
these cases, the maximum PE utilization number is 115 and
64, while the operating frequency of the design is 300 MHz
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Table 1. Lambda Module Implementation Results.
Operating

Bits Dims Frequency Area DSPs Latency
(MHz) (slices) (clocks)

4 5 300 140 2 28

8 5 270 284 2 30

8 10 270 296 2 36

8 16 270 304 2 44

12 65 203 483 2 99

and 203 MHz, respectively.

5. CONCLUSION

A novel scalable architecture for the acceleration of SVM
training based on Gilbert’s Algorithm has been presented.
Even though the hardware mapping concerns a class of FPGA
devices, the results can be extended to other case studies
with different resources constraints. The results show that
the efficient implementation of PE can maximally utilize the
FPGA resources and significantly reduce the SVM training
time for large-scale problems with high dimensional data.
The proposed architecture overperforms the software imple-
mentation of the algorithm, accelerating the training prob-
lem by 3 orders of magnitude. The PE is designed for linear
SVMs, however an extension to the non-linear case can be
easily accommodated by the proposed architecture by re-
placing the inner products with kernel functions.

The results of this work will be futurely exploited for
the proposal of a more integrated solution, using chunking
methods and clustering to answer SVM online training prob-
lems with very large training datasets.
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