2012 15th Euromicro Conference on Digital System Design

The DeSyRe project: on-Demand System Reliability

L. Sourdis ', C. Strydisﬁ, C.S. Bouganis5 , B. Falsafi’, G.N. Gaydadjiev], A. Malek', R. Mariani’, D. Pnevmatikatos®,
D.K. Pradhan’, G. Rauwerda®, K. Sunesen® and S. Txzilis'

'Chalmers University of Technology, Computer Science and Engineering Dept., Sweden
*University of Bristol, Computer Science Dept., UK
3 Ecole Polytechnique Fédérale de Lausanne, Computer and Communication Sciences, EPFL, Switzerland
* Foundation for Research and Technology — Hellas (FORTH), Institute of Computer Science (ICS), Greece
*Imperial College London, Electrical and Electronic Engineering Dept., UK
’Neurasmus B.V., The Netherlands
"Yogitech SpA, Italy
¥Recore Systems B.V., The Netherlands

E-mail: sourdis@chalmers.se

The DeSyRe project builds on-demand adaptive and reliable
Systems-on-Chips (SoCs). As fabrication technology scales down,
chips are becoming less reliable, thereby incurring increased
power and performance costs for fault tolerance. To make
matters worse, power density is becoming a significant limiting
factor in SoC design, in general. In the face of such changes in the
technological landscape, current solutions for fault tolerance are
expected to introduce excessive overheads in future systems.
Moreover, attempting to design and manufacture a totally defect-
/fault-free system, would impact heavily, even prohibitively, the
design, manufacturing, and testing costs, as well as the system
performance and power consumption. In this context, DeSyRe
will deliver a new generation of systems that are reliable by
design at well-balanced power, performance, and design costs.

Keywords— Fault-Tolerance, System-on-Chip, Reconfigurable
Hardware, Medical Systems.

I. INTRODUCTION

In the coming nanoscale era, chips are becoming less reliable,
while manufacturing reliable chips is becoming increasingly
more difficult and costly [1, 16]. Prominent causes for this are
the shrinking device features, the sheer number of components
on a given area of silicon, as well as the increasing complexity
of current and future chips. It is expected that a significant
number of devices will be defective already at manufacture
time and many more will degrade and fail within their
expected lifetime [2]. Furthermore, process variations as well
as the increasing number of soft errors introduce additional
sources of errors for future chips.

The ITRS targets a constant defect rate (1395 defects/m?)
in order to keep the chip yield constant [39]. Such a target is
expected to substantially increase the chip manufacturing cost
of future semiconductor technologies. Alternatively, chips
need to be designed to tolerate an increasing number of
defects in order to maintain a high yield. Apart from defects at
manufacture time, aging effects are becoming more severe
leading to more permanent and intermittent faults during the
lifetime of a chip. Transistors degrade faster; while the

The DeSyRe Project is supported by the European Commission Seventh
Framework Programme, grant agreement n° 287611. www.desyre.eu

300 — — — - Dyn Power ITRS’08
Static Power ITRS’08 /
2504 Total MPU Power ITRS'08)\
Maximum Power Budget /\ / ~Q
200/ Dyn Power ITRS'09 RN
£ Tl MPU Power (TRS0 /\\N// I
— T Otal ower ' i 4
£ 150 T AN
= SRS
Y BN
100 VAN Toms
— TN
50 g
0 —— T
S O O N U DX 0 00 09O QAN AVad o
PN N AN N NN NN NN AL
P PR P PR P R PP PP PR PP

Fig. 1. Dynamic, Static and total power consumption of a Microprocessor
chip vs. the maximum available power budget, based on the ITRS 2008 and
2009 projections.

degradation rate is further accelerated by the heavy testing
processes (e.g. burn-in). Aging is expected to shorten SoC
lifetime and to be a significant source of errors in technologies
beyond 16-nm [1]. Process variations cause devices to operate
differently than expected; such variations are random dopant
fluctuations, heat flux, as well as lithography problems due to
the shrinking geometries. Currently, on-chip clock frequency
and total power consumption present variations up to 30% and
50%, respectively, across different parts of a single chip; it is
projected that variations will only become more severe in the
future and worst-case, deterministic design will be insufficient
and unable to deliver reliable systems. Finally, as transistor
count increases, the number of soft errors on a chip (i.e.
transient faults) grows exponentially [2]. For example, by the
16-nm generation, the failure rate will be almost 100-fold
higher that at 180-nm [2]; current fault-tolerance techniques
such as simple check-pointing will, then, incur prohibitively
high energy and performance costs.

As feature size continues to shrink and chips become less
reliable, the cost for delivering reliable chips is expected to
grow for future technology nodes. The price in system power
and energy consumption, in performance degradation, and in
extra resources, is getting higher in order to perform redundant
computations in time or in space. However, it is a well-known
fact that power consumption is becoming a severe problem,
while performance no longer scales very well (mostly due to

978-0-7695-4798-5/12 $26.00 © 2012 IEEE 335
DOI 10.1109/DSD.2012.127

cps™

Conference Publishing Services

power-density limitations). To reduce some of the above costs,
DeSyRe aims at reliable systems containing and tolerating
unreliable components rather than targeting totally fault-free
systems. Our goal is to describe a new, more efficient design
framework for SoCs which provides reliability at lower power
and performance cost.

Although the above technology trends make the design of
future SoCs harder, one of them can be turned to our
advantage. As shown in Fig. 1, the increasing power density
limits the gate density. In a few years, significant parts of a
chip will be forced to remain powered-down in order to keep
within the available power budget [49]. In DeSyRe, we
capitalize on this observation and propose to exploit the
aforementioned unused resources to offer flexibility and
reconfigurability on a chip. Until now, reconfigurable
hardware had a significant resource overhead; however, as
explained above, this limitation no longer exists as on-chip
resources are becoming ‘“cheaper”. A dynamically
reconfigurable hardware-substrate can provide an excellent
solution for defect tolerance; it can be used to adapt to faults
on demand, isolate and correct defects, as well as to provide
spare resources to substitute defective blocks. In the DeSyRe
project, we intend to use such a reconfigurable substrate and
combine it with system-level techniques to provide adaptive
and on-demand reliable systems.

The remainder of the paper is organized as follows: in
Section II, we give a brief overview of fault-tolerant systems
and techniques, as well as of adaptive systems. In Section III,
we describe the DeSyRe design framework. Sections IV and V
summarize the DeSyRe fault-tolerance techniques and
reconfigurable substrate. In Sections VI and VII, we present
the medical applications and baseline SoCs used in DeSyRe.
We conclude in Section VIIL

II. BACKGROUND

In this section, we provide a very brief overview of current
fault tolerance techniques and describe existing approaches for
adaptive systems.

A. Fault-Tolerant Systems

A plethora of techniques have been proposed over the past 50
years to combat faults and provide reliable systems [3,4]
starting even before the IBM mainframes [5] (S/360-50) in the
1960s until the recent Leon3FT [6] and Razor [7,8]. However,
as indicated in the previous section the technological
landscape changes, fault density increases, future chips will
have an excess of resources which cannot all be active at the
same time due to power issues. The above poses new
challenges that will require radical changes in design
methodologies when building reliable chips.

In general, techniques to increase reliability can be
categorized to fault avoidance and fault tolerance techniques.
Fault avoidance requires conservative design and is fault
intolerant. For example, as illustrated in Fig. 2, implantable
medical systems use significantly older and mature
semiconductor technologies to manufacture reliable systems; a
similar approach is also followed in other application domains
such as the space domain. However, relying on older
technology nodes has an excessive performance and energy

336

—— Implant trends o
- =« - Implant confidence intervals
===Mainstream trends

2 3 4 5

Fabrication technology (um)

1

T T T T T T T T T T T T T T a
1989 1991 1993 1995 1997 1999 2001 2003
Publication year
Fig. 2. Implantable Medical Systems currently use significantly older
technology to guarantee reliability, resulting in excessive energy and
performance overheads compared to using mainstream technology [9].

2005

cost compared to using recent emerging technologies; such
cost is often prohibitive for future embedded systems. In the
other hand, fault tolerance requires redundancy (static or
dynamic) to provide the information needed to negate the
effects of a fault (detection, isolation, correction). However,
redundancy, in time or space, introduces high power and
performance overheads, too. DeSyRe attempts to reduce these
overheads providing fault-tolerance on-demand based on fault
types and densities, system constraints and application
requirements.
1) Dealing with Permanent Faults

The common way to cope with permanent faults is to either
provide redundant identical components [10] (coarse-grain
reconfiguration) or fine-grain reconfigurable hardware
(FPGAs). Some works consider redundancy at the core-level
[11,12,13,14], or at the pipeline-stage (StageNet[15]). As an
alternative to coarse-grain reconfigurable hardware, a large
number of works exploit FPGAs to built reliable systems. For
example, currently, NASA and CHREC use FPGAs to build
reliable Systems for Space Computing [17,18]. In the past
years, many other research works proposed FPGAs for fault-
tolerance, such as [19,20]. There is a tradeoff between the
level of tolerance to permanent faults and the performance,
power, and area overheads of reconfiguration. On the one
hand, coarse-grain reconfiguration has reduced performance,
power and area costs, but is less tolerant to faults. On the other
hand, fine-grain reconfiguration is more flexible and thus
more tolerant to defects, but suffers higher performance,
power and area overheads.

In the DeSyRe project, we propose a mix of both coarse-
and fine-grain reconfigurable substrate to tolerate permanent
faults. This is expected to provide increased defect tolerance at
lower performance, power, and area costs.

2) Dealing with Transient Faults
In order to tolerate transient faults, redundancy is required to
detect and correct them. Redundancy can be introduced at the
core-level [21], thread-level or functional-unit level using
checkers [4]. Currently, for microprocessor architectures,
there has been proposed a multitude of techniques for dealing
with faults in either the control [22], the datapath [23] or both
[24]. Other approaches suggest ISA extensions for data-
dependency tracking and control-flow checking, such as RSE

[25]. Furthermore, the Leon3FT is an example of a current
processor resilient to transient faults using error-correcting
codes (ECC) [6].

In general, static and always-on redundancy suffices to
detect faults; however, it is not power- and energy-efficient
since it often doubles the hardware and power consumption
for the same performance. In the past, lowering the reliability
standards has been proposed in order to save energy [26].
However, for many applications this is not acceptable,
especially in the embedded domain. Another interesting
approach is to provide application-aware reliability [27]; that
is to enable redundancy only when needed.

DeSyRe will develop fault-tolerance mechanisms which
are adapted on demand to the application requirements and the
system constraints (energy, resources, performance needs) as
well as to faults; this will be achieved by the synergy of the
logical layers and physical partitions of the DeSyRe
framework described in the next Section.

B. Customizable and Adaptive Systems

Recently, researchers have started working on design
techniques for self-adaptive systems. W. Luk described his
vision for self-optimizing and self-verifying systems [28]
aiming at better efficiency, re-usability and correctness. J.
Henkel et al. proposed adaptive embedded systems based on
an atom/molecule model to adapt at runtime on system
requirements not foreseen at design or at compile time [29]. In
all cases, FPGA devices have been considered as the hardware
substrate due to their flexibility of on-demand dynamic
reconfiguration, while fault tolerance is often not the primary
objective.

DeSyRe will build a novel reconfigurable substrate to
support adaptation and fault tolerance at reduced power and
performance cost. In combination with runtime-system
software routines, the reconfigurable substrate will provide
fault tolerance and system adaptation.

1) Runtime System Optimizations
Several systems support dynamic power management, often
through voltage scaling, however when combined with fault
tolerance, power management becomes significantly more
complex. That is simply because fault tolerance consumes
more power, while power efficiency, i.e. voltage scaling, can
be more fault prone. Optimizing power and reliability on
dynamically adaptive systems is still an open problem [30];
adding resource management and real-time performance
constraints is even harder. Some works attempt to solve part of
the problem. For example, several techniques attempt to
optimize execution time under a given power envelope [31],
or conversely minimize energy consumption under a
performance constraint [32]. Other tools such as Olay [33]
and Maestro [34] focus only on reliability management
targeting homogeneous MPSoCs such as StageNet. Existing
systems do not consider simultaneous optimization of
application requirements (performance, QoS), and system
constraints (power, temperature), in conjunction with
reliability. In DeSyRe, runtime optimizations will consider
faults, system constraints (energy, resources) and application
requirements (real-time performance, expected reliability-
level, task priority, etc.). This task becomes more challenging
considering the heterogeneity of the DeSyRe systems and the

337

fact that runtime support should be lightweight in order not to
overburden the system.

2) Runtime Hardware Synthesis and Customization
In the past, a significant body of work has been performed on
hardware synthesis, trading computation quality (i.e.
precision, accuracy, efficiency of algorithms) for performance
(processing latency and throughput), for power consumption
and for area/resources. Some of the recent works in the field
have been performed by Imperial, such as [35], which
nonetheless require significant computational power and are
performed off-line. As opposed to previous works, DeSyRe
hardware synthesis will be generic and will be performed on
the fly. Generation of new system configurations will be based
not only on pre-computed, but also on dynamically created
configurations (for reconfigurable interconnects).

3) Self-correcting, Self-checking, Self-aware Components
This is a relatively new topic where DeSyRe will contribute
with new generic techniques. One of the works closest to
DeSyRe is the faultRobust technology [36] developed by
Yogitech SpA, one of the DeSyRe industrial partners.
Yogitech adds wrappers to the components of a SoC (CPU,
on-chip memory, local bus, etc.) in order to check their correct
functionality. In DeSyRe, we will build on these wrappers
making them more advanced.

III. THE DESYRE DESIGN FRAMEWORK

In this section, we briefly describe the different parts of the
DeSyRe framework. Systems-on-Chip comprise multiple
design levels, ranging from top-level running software to
hardware components and all the way down to the elementary
technological (transistor) substrate. Although increasing
design complexity has so far been kept in check by
partitioning the design in horizontal levels (e.g. software,
hardware, technology), this approach is rapidly becoming
inefficient due to the increasing degree of cross-level
sophistication required for modern embedded-system design.
Knowledge of levels both above and below a specific level is
becoming imperative for building functional systems. This
implies a vertical, cross-cutting, level partitioning with
designers having knowledge of what transpires above and
below their respective levels of expertise.

To address this pragmatic need, the DeSyRe framework is
partitioned across two orthogonal design dimensions: a
physical and a logical abstraction. The physical partitioning is
based on the different technological substrates (with different
fault densities) used in the various parts of the framework and
is mostly of interest to experts closer to the technology level.
The logical partitioning considers the same framework from
the viewpoint of functionality (i.e. which part of the system
does what) and should mostly interest experts closer to the
architecture and system level.

1) Physical Partitioning
Fig. 3 illustrates the physical partitioning of the DeSyRe SoC.
The design area is physically divided into a fault-free (FF)
section providing overall system management and a fault-
prone (FP) section providing the actual system functionality.
The motivation for this partitioning is reducing the chip cost:
Designing a totally fault-free system is expensive, thus the FF
section should be small and lightweight.

DeSyRe System-on-Chip

Fault Free Areal

Fault Prone Area

oo | i
Task IP-core | L
descrip. Library e Custom

| DSP EN Block
o E | It
E o
T
=1
3 E | L

it T Custom

0 “ [[] wisc DSP Block

Processing
Element I
I

Fig. 3. DeSyRe SoC physical partitioning with a fault-free section for SoC
management and a fault-prone section for SoC functionality.

Fault-Free section: The FF section is required to provide
centralized, system-wide control of the SoC, aiming to provide
Quality of Service (QoS) attributes such as performance, low
power consumption, resource utilization and fault tolerance.
The various techniques through which this will be achieved
involve an efficient combination of:

e Online fault tolerance.

e Runtime task scheduling, while being aware of task

characteristics such as urgency and safety-criticality.
Resource allocation, under varying availability of
computational resources.

Reconfiguration schemes to achieve flexible and
defect-tolerant operation.

Fault-Prone section: The FP section is under the direct
control of the FF section. It contains various components
realized in a reconfigurable substrate (a mixture of fine- and
coarse-grain reconfigurable logic). The components
implement the main system functionality based on the target
application (domain). They are required to exhibit, among
others, self-checking and self-correcting properties, working
in tight synergy with those of the FF section. To this end, the
various components should be equipped with their own self-
checking and -correcting mechanisms, albeit under (in)direct
control of the FF section.

2) Logical Partitioning
The logical partitioning organizes the DeSyRe SoC in three
main layers. Fig. 4 depicts the layers from bottom to top:
components, middleware and runtime system. This
subdivision is based on the abstraction level involved and the
tasks handled by each layer.

Components: The bottom layer deals with fault-tolerance
issues of each component (i.e. unit which delivers a specific
functionality) in the FP section, individually. In other words, it
is responsible for providing component-level (intrinsic) fault
tolerance. The system is composed of multiple heterogeneous
components located at the fault-prone section. The design of
these components should take into account the requirements of
the DeSyRe system. They will be able to autonomously detect
faults that might appear in them and possibly correct a subset

338

DeSyRe Abstraction Layers

L3: Runtime System: 1
e Task scheduling

* Adaptive Checkpointing
¢ Alternative task descr.

L2: Middleware:
e HW reconfiguration
e Place and Route
e Component sharing

Fault Free Section

CL1: Online testing
CL2: Graceful degradation
CL3: Virtualization Sunnaort

L1: Components:
« Self checking
Self correcting
Variable modes
Context switching
Self awareness v

Fault Prone Section

Fig. 4:
functionality),
management).

Logical partitioning of a DeSyRe SoC: Components layer (SoC
Middleware layer and Runtime-System layer (SoC

of these detected faults (in other words, to exhibit self-
checking and self-correcting properties). To deal with the
aforementioned faults, they should also have a certain degree
of flexibility, by being able to switch context and support task
migration —that is, receive a new task or transfer a running
task elsewhere. Those features, of course, require interfacing
with the above logical layers, to be able to send status
information and receive commands concerning modifications
in the mode of operation.

For the list of faults with which a component deals
intrinsically, any detection and/or correction action from the
component side has to be transparent to the upper layers. In
case there is partial recovery - affecting functionality and QoS
constraints - or no correction whatsoever, the upper layers
have to be notified about the new status of the component.
Component-level fault tolerance, as opposed to centralized
techniques, should provide recovery schemes with the
advantage of lower latency. On the other hand, these schemes
will be, as a matter of fact, less efficient than the ones
supported by upper logical layers.

Middleware: The second layer is responsible for the
hardware synthesis and reconfiguration of the components in
order to provide correctly functioning underlying hardware to
the upper layer. In this layer we will develop mechanisms for
the dynamic reconfiguration of hardware resources
implemented in the (fine- and/or coarse-grain) reconfigurable
FP section. The Middleware manages the components as black
boxes which need to be interconnected, isolated, (re)placed in
order to deliver a functioning hardware platform ready to be
used for running the tasks that the runtime system dictates. To
one extent, the Middleware makes all its actions transparent to
the Runtime system in order to provide well-functioning
hardware; that is in order to ensure the reconfiguration process
is performed correctly and installs a correct new configuration.

Runtime System: The third layer deals with run-time
issues of the system; its basic functionality is to schedule tasks
to components, to ensure the best quality of service for the soft
real-time portion of the applications, and to adapt the system
in the presence of faults. To deal with faults, the Runtime
System collects system health status information for all system
components to establish a system health map. Using the health
map together with a description of the application tasks and

TABLEI
DESYRE TECHNIQUES FOR TOLERATING VARIOUS TYPES OF FAULTS

Fault Type DeSyRe Detection mechanisms DeSyRe Correction mechanisms
e Online testing e Coarse- or fine-grain Reconfiguration (via Middleware, and runtime optimizations)
e Self-checking components e Task migration (possibly using alternative task descriptions)
Permanent e Component sharing
e Graceful degradation (through the above mechanisms, and with the assistance of
runtime system optimizations)
o Software error detection codes (‘used together e Adaptive check-pointing (i.e. rollback and recover).
Transient with adaptive checkpoints) o Application-aware
e Self-checking components o Adapted to fault density
o Self-correcting mechanisms at the components (i.e. ECCs)
e Same as transient, with some additional e Task migration (possibly using alternative task descriptions)
Intermittent software mechanism to distinguish them from e System Reconfiguration and Runtime optimizations

the transient faults

Adaptive check-pointing (i.e. rollback and recover)

their requirements, the Runtime System identifies a global
assignment of tasks to the various system resources that
satisfies the application requirements and achieves the best
possible performance from the (possibly faulty) processing
cores in the fault prone area. The Runtime System
functionality is realized in the FF section of the SoC (running
on a GPP). The main challenge for the runtime system is to be
adaptive in order to conform to the underlying reconfigurable
hardware and to use it efficiently.

In addition to the above logical layers, the project is
involved with three distributed tasks that span across all three
layers, since all three of them need to deal with and support
them. Those tasks are online testing, graceful degradation and
virtualization support. The functionality of all three cross-
layer tasks needs to be implemented in a distributed manner
across the layers of the framework.

Online testing: Dynamically scheduled online tests of
SoCs to detect errors and diagnose faults. Online testing is a
task that is partially treated by: (i) the Runtime system, by
rescheduling tasks to idle components for on-line testing, (ii)
the Middleware, by providing a spare component while the
original is tested, and (iii) the Components, by providing
observability and controllability required for testing.

Graceful degradation: Depending on the faults, the
functionality of the system should be adjusted and/or
degraded. Instead of letting the entire system crash, it is
desired to allow performance to drop or functionality to be
reduced. The Runtime System controls the graceful
degradation based on priorities and constraints of the
application. Critical tasks are to be supported at all cost, while
low priority tasks may be dropped; thereby, emergency modes
of operation will be introduced, when the original
functionality cannot be supported.

Virtualization: DeSyRe targets multiprocessor SoCs
(MPSoCs) composed of heterogeneous and dynamically
reconfigurable components. It is essential for the efficiency of
a DeSyRe-based system to allow a task to be ported in
heterogeneous components or various configurations of a
component. Consequently, virtualization support is an
important issue and it is addressed in the proposed work. To
do so, components will be designed to support virtualization;
they should either translate task descriptions to match the
underlying hardware or alternatively maintain the same
functionality despite reconfiguration. An additional issue
requirement for the system is to support migration of a task

339

from one component-type/configuration to another, in order to
increase system availability and defect tolerance.

IV. DESYRE MECHANISMS FOR FAULT TOLERANCE

The proposed framework is expected to cope with permanent,
transient and intermittent faults using the above described
logical layers and physical parts. Table 1 summarizes the
DeSyRe mechanisms to detect and correct various fault types.

Permanent faults (defects), due to design, manufacturing
or aging effects, are detected and diagnosed in DeSyRe
through online testing scheduled centrally by the runtime
system or distributed by self-checking mechanisms at each
component. Hardware reconfiguration of the defective part is
the first choice for correction; this involves isolation, and
replacement of the defective part, performed by Middleware
with possible high-level decisions made at the runtime system
layer. When reconfiguration is not possible the tasks
scheduled in the defective parts of the system are re-scheduled
in other available components. To economize system
resources, component sharing may be possible at the cost of
performance degradation. The above will be achieved based
on the graceful degradation policies of the system.

Transient faults (soft-errors) are detected in DeSyRe
either centrally at the software-level using error detection (and
correction) codes or distributed at the components using
checkers. Check-pointing mechanisms will be used to rollback
to a known good state and recover from faults. Check-pointing
will be adaptive to the application requirements and the fault
density (i.e. adaptive frequency and placement of checkpoints)
for energy efficiency. At the component level self-correcting
mechanisms may be able to correct a sub-set of faults.

In DeSyRe, intermittent faults (i.e. periodic transient
faults) are distinguished from transient faults in order to treat
these differently. To do so, we add to the transient-fault
detection mechanisms extra functionality to determine
whether a fault is repeated. Then, task migration to other
available components or hardware reconfigurations can be
used for correction, while adaptive check-pointing and context
switching mechanisms will be required to rollback and recover
or to migrate a task.

V. DESYRE RECONFIGURABLE SUBSTRATE

The DeSyRe framework relies significantly on a flexible and
dynamically reconfigurable hardware substrate to isolate,
replace and (when possible) correct design and manufacturing

LUT Alternative
implemen-
LR tation of s
I
RISC

[|
Fine-grain Reconf. HW

S

S

-grain nf. HW ‘

:
T Sub-component/
pipe-stage etc.

S

Fig. 5. The novel DeSyRe flexible/reconfigurable hardware substrate.

defects as well as defects due to aging. In previous works, the
design choice was either coarse- or fine-grain granularity of
substitutable units; these are units that can be replaced when
defective. In the first case, the substitutable unit can be an
entire component (e.g. a microprocessor), while in the latter
case an FPGA logic cell. There are tradeoffs between these
two alternatives. Coarse-grain approaches are less defect-
tolerant - fewer defects can damage the system - but are more
power-efficient and faster, since the correctly functioning
substitutable unit is implemented in fixed hardware. Fine-
grain approaches can tolerate more defects, but realizing a
system in an FPGA introduces high performance overhead and
high power cost.

One of the primary challenges in the DeSyRe project is to
define a more efficient underlying hardware substrate for the
DeSyRe SoC. DeSyRe explores a granularity mix of fine- and
coarse-grain underlying hardware in order to provide
increased defect-tolerance without giving away significant
parts of the system performance and power efficiency. Fig. 5
depicts such an example with two DeSyRe RISC components.
In this example, each RISC processor is divided in smaller
sub-components (implemented in fixed hardware), i.e. pipeline
stages, functional units, etc., surrounded by reconfigurable
interconnects/wires. In the absence of defects, the sub-
components “S” will form the RISC component. However, in
case a sub-component is defective, it can be isolated using the
reconfigurable interconnects, and subsequently be replaced
either by an identical unused neighboring sub-component (S),
or by a functionally equivalent instance (S’) implemented in
fine-grain reconfigurable hardware.

VI. APPLICATIONS

The DeSyRe framework will be applied to two medical SoCs,
namely an artificial cerebellum and an artificial pancreas. Both
applications have been provided by Neurasmus BV, one of the
DeSyRe-project industrial partners.

Application 1: Artificial Cerebellum
Medical SoC for artificially restoring part of the cerebellum to
recover sensorimotor control

340

.": ? b
o ’ DsP | GPP i ‘
} i
3 !
—
| |
ADC | DsP MEM | L DAC
() t
B : |
H : |
H H
L— il psp |4 —
! |
\ /
4

e
High-speed
interconnect

Fig. 6. Portable artificial-cerebellum system for restoration of damaged
olivocerebellar modules in the brain.

Neurasmus BV focuses on developing an artificial, real-
time, cerebellar medical MPSoC for rescuing damaged
parts of an actual, biological brain suffering from various
brain diseases stemming from loss of sensorimotor control,
such as Calcium-Channelopathies, Fragile-X and Autism.
Sensorimotor integration in healthy subjects relies on the
proper morphology and timing of neural (spike-coded) signals
exchanged between the cerebellar and the cerebral cortices.

An artificial cerebellum effectively is a multi-level,
closed-loop-control system which will entail extensive and
diverse processing tasks as well as real-time interfacing to
multiple recorded (input) and stimulated (output) neural
structures. In its first generation, it is expected to be portable
and has the following requirements:

e high reliability due to its medical application;

high throughput (for replacing a large number of
biological neurons);
low latency (for “real-brain-time” processing);
power efficiency for portability; and
adaptiveness to different input patterns.
By containing multiple parallel heterogeneous parts, the
artificial cerebellum is a heterogeneous MPSoC and a natural
fit for the DeSyRe framework which will provide the above
features by design.

For the requirements of the DeSyRe project, we focus on
the olivocerebellar modules of the brain. Neurasmus has
already devised and maintains accurate neural models in-
house, which can be mapped to an artificial cerebellum. If this
is done correctly, the noise levels in the transmitted neural
signals are expected to revert to normal levels. However, the
current software implementation of the Neurasmus models is
not able to achieve real-time execution. Ultimately but beyond
the timeframe of this project, a real-time artificial cerebellum
SoC, can lead to rescue approaches in various other
pathogenic instances such as altered Purkinje-cell calcium
influx, inhibited Purkinje-cell feed-forward pathways, etc..

The conceptual diagram of the envisioned DeSyRe
system is illustrated in Fig. 6. The DSP, GPP and custom-IP
ensemble will be used to emulate clusters of hundreds of
olivocerebellar modules so as to match the massively parallel
nature of the cerebellum. The system will further consist of
A/D and D/A converters for interface to the biological tissue.
Within DeSyRe, recorded real neural-signal traces will be
used as inputs for the evaluation of the proposed system.

Datriogang

[——
caeulstions s furthar
safuty chects

Fig. 7 Implantable artificial-pancreas system for treatment of diabetic patients.

Although significant research has already been done on
software and hardware neural modeling [45, 46], no solution
exists yet which allows scientists to simulate cerebellar
structures of realistic sizes (on the order of magnitude of
thousands of neurons) at real brain speeds. With this
application we aspire to build not only a realistically sized and
timed cerebellar subsystem but also a system that will
continue working in the presence of large numbers of defects.

Application 2: Artificial Pancreas

Artificial pancreas for diabetic patients: Closed-loop control
for automatic regulation of glucose-concentration in the
blood.

In diabetic patients the pancreas cannot produce insulin.
The sheer number and increasing rates of such patients
worldwide is major incentive for developing a so-called
"artificial-pancreas" device. In essence, such a device is a
closed-loop-control implant which samples the glucose levels
in the blood stream and releases insulin as needed (see Fig. 7).
Even though an actual, chronic artificial pancreas has not been
developed yet, glucose-sensing implants have constantly
increased in numbers and improved over the years [37, 38].

Given the large and constantly increasing number of
diabetic patients worldwide, Neurasmus BV envisions
implementing the artificial-pancreas implant as a DeSyRe-
based, implantable system for automatically and
accurately regulating glucose levels in the blood. It shall
contain a module for processing sensory data (measuring
glucose concentration in the blood), a controler for insulin
injection, and a third module implementing the calculations
for the closed-loop control of the system. A user interface will
also be included. In developing this application, we will adopt
the latest achievements in artificial-pancreas research [47, 48],
while improving the state of the art by providing highly
defect-tolerant devices, suitable for chronic implantation.

Although both DeSyRe medical applications exhibit high
reliability requirements, the artificial pancreas system will be
radically different from the artificial cerebellum, a difference
which will help to demonstrate the diversity and flexibility of
the DeSyRe framework. The artificial-cerebellum system
requires significant processing of a large number of modeled
cerebellar nuclei. On the contrary, the artificial pancreas
requires — by comparison — few computations for processing
and controlling sensors and actuators, and for interfacing
(security, communication, compression) to a treating
physician or the patient. It requires, however, more rigorous
closed-loop control, and should be ultra-low-power and
adaptive to new treatment descriptions.

341

Network IF

Xentium
6

Fig. 8: CRISP Reconfigurable Fabric Device.

VII. HETEROGENEOUS BASELINE SOC

The two applications described in the previous section will be
ported to two heterogeneous SoCs. These two SoCs will be
designed based on the CRISP multicore SoC template,
integrating techniques developed within the CRISP project
[43]. The CRISP Reconfigurable Fabric Device is depicted in
Fig. 8 showing a multicore SoC template with 9
reconfigurable Xentium DSP cores and 2 embedded memory
tiles. The DeSyRe baseline SoCs will consist of Xentium DSP
cores [40], on-chip memory blocks, RISC processors, and
custom blocks interconnected with a fault-tolerant Network-
on-Chip (NoC). Fault-tolerance extensions to existing NoC
approaches [41, 42] as implemented in [43] and [44],
respectively, will be considered. The fault-free DeSyRe
section will be realized on a separate general-purpose
processor. The artificial-cerebellum SoC will consist primarily
of multiple DSP processors to perform the computationally
intensive tasks of modeling brain-cells. The artificial pancreas
will be more lightweight; it is expected to consist of a RISC
processor to carry the necessary computations, a second one
for the user-interface, and custom IP blocks.

VIII. CONCLUSIONS

The increasing need for fault tolerance imposed by the
currently observed technology scaling introduces significant
performance and power overheads. In our attempt to alleviate
these overheads, the DeSyRe project will deliver a new
generation of — by design — reliable systems, at a reduced
power and performance cost. This is achieved through the
following main contributions. Rather than aiming at totally
fault-free chips, DeSyRe designs fault-tolerant systems built
using unreliable components. In addition, DeSyRe systems are
on-demand adaptive to various types and densities of faults, as
well as to other system constraints and application
requirements. A new dynamically reconfigurable substrate is
designed and combined with runtime system software support
in order to leverage on-demand adaptation, customization, and
reliability at reduced cost. The above will result in a well-
defined, generic and repeatable design framework for a large

variety of SoCs. The proposed framework is applied to two
medical SoCs with high reliability constraints and diverse
performance and power requirements.

(1

[2]

[3]
[4]
[3]

[6]
[7]

[8]

[
[10]

[11]

[12]

[13]

[14

(15

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

S. Borkar “Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation”, IEEE Micro,
25(6):10-16, 2005.

P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G.
Dermer, S. Hareland, P. Armstrong, and S. Borkar, “Neutron soft error
rate measurements in a 90-nm CMOS process and scaling trends in
SRAM from 0.25-pum to 90-nm generation,” Electron Devices Meeting,
2003. IEEE International Technical Digest (IEDM), Dec. 2003

D.P. Siewiorek, Architecture of Fault-Tolerant Computers: A Historical
Perspective. IEEE Proceedings 19:1710-1734, Dec 1991.

F. F. Sellers, M.-Y. Hsiao, and L. W. Bearnson, Error Detecting Logic
for Digital Computers, McGraw-Hill Inc., 1968.

M.-W. Bartlett and M.-L. Spainhower, "Commercial Fault Tolerance: A
Tale of Two Systems," IEEE Trans. Dependable Secur. Comput., vol. 1,
iss. 1, pp. 87-96, 2004.

J. Gaisler. LEON3FT-RTAX Data Sheet
http://www.gaisler.com/doc/leon3ft-rtax-ag.pdf
D. Ernst, et.al., "Razor: A Low-Power Pipeline Based on Circuit-Level
Timing Speculation," 36th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), 2003, p. 7.

D. Blaauw, S. Kalaiselvan, K. Lai, Wei-Hsiang Ma, S. Pant, C.
Tokunaga, S. Das, D. Bull. Razor II: Situ Error Detection and Correction
for PVT and SER Tolerance, 2008 IEEE Int’l Solid-State Circuits Conf.
C. Strydis,“Universal Processor Architecture for Biomedical Implants —
The SiMS Project” PhD Dissertation, TU Delft, March 2011.

X. Zhang, H.G. Kerkhoff, "Design of a Highly Dependable
Beamforming Chip", 12th EUROMICRO CONFERENCE on DIGITAL
SYSTEM DESIGN (DSD), IEEE Computer Society, August 2009

N. Aggarwal, P. Ranganathan, N.P. Jouppi, and J.E. Smith. Configurable
isolation: building high availability systems with commodity multi-core
processors. SIGARCH Comput. Archit. News 35, 2, pp. 470-481, 2007.
J.C. Smolens, B.T. Gold, B. Falsafi, and J.C. Hoe. Reunion:
Complexity-Effective Multicore Redundancy, Int’l Symp. on
Microarchitecture, pp. 223 - 234, 2006.

B.T. Gold, B. Falsafi, and J.C. Hoe. Chip-Level Redundancy in
Distributed Shared-Memory Multiprocessors, Proceedings of the 15th
IEEE Pacific Rim Int’l Symp. on Dependable Comp., pp. 195-201, 2009
D. Sylvester, D. Blaauw, and E. Karl. ElastIC: An Adaptive Self-
Healing Architecture for Unpredictable Silicon. IEEE Design and Test,
23, pp. 484-490, 2006.

S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, "StageNetSlice:
a reconfigurable microarchitecture building block for resilient CMP
systems," Int’l Conf. on Compilers, architectures and synthesis for
embedded systems (CASES), New York, NY, USA, 2008, pp. 1-10.

T. Austin, V. Bertacco, S. Mahlke, and Y. Cao, "Reliable Systems on
Unreliable Fabrics," IEEE Des. Test, vol. 25, iss. 4, pp. 322-332, 2008.
NASA Tech briefs, FPGAs with Reconfigurable Fault-Tolerant
Redundancy. www.nasa.gov

J. Ramos, et. Al.. High-Performance, Dependable Multiprocessor, IEEE
Aerospace Conference, 2006.

S. Tzilis, 1. Sourdis, G.N. Gaydadjiev. "Fine-grain Fault Diagnosis for
FPGA Logic Blocks", Int. Conf. on Field-Programmable Technology
(FPT 2010), Beijing, China, December 2010.

J. M. Emmert, C. E. Stroud, and M. Abramovici, "Online fault tolerance
for FPGA logic blocks," IEEE Trans. Very Large Scale Integr. Syst.,
vol. 15, iss. 2, pp. 216-226, 2007.

T. M. Austin, "DIVA: a reliable substrate for deep submicron
microarchitecture design," in Proc. MICRO 32: Proceedings of the 32nd
annual ACM/IEEE int’l Symp. on Microarchitecture, 1999, pp. 196-207.
K. Seongwoo, AK. Somani. On-Line Integrity Monitoring of
Microprocessor Control Logic, Int’l Conf on Computer Design: VLSI in
Computers & Processors (ICCD), 2001, pp. 314-319.

A. Meixner and D. J. Sorin, "Error Detection Using Dynamic Dataflow
Verification," PACT '07: 16th Int’l Conf. on Parallel Architecture and
Compilation Techniques, Washington, DC, USA, 2007, pp. 104-118.

A. Meixner, M. E. Bauer, and D. Sorin, "Argus: Low-Cost,
Comprehensive Error Detection in Simple Cores," in Proc. MICRO '07:

and User's Manual.

342

(25]

[26]

[27]

(28]

[29]

[30

(31]

(32]

(33]

[34

[35

[36]

[37]

[38]

[39

[40]
[41]

[42]

[43]

[44]

[43]

[46]

[47]

(48]

(49]

Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, Washington, DC, USA, 2007, pp. 210-222.

N. Nakka, Z. Kalbarczyk, R. K. Iyer, and J. Xu, "An architectural
framework for providing reliability and security support,” Dependable
Systems and Networks, International Conference on, pp. 585-594, 2004.
G. Chen, M. Kandemir, and F. Li, "Energy-aware computation
duplication for improving reliability in embedded chip multiprocessors,"
in Proc. ASP-DAC '06: Proceedings of the 2006 conference on Asia
South Pacific design automation, Piscataway, USA, 2006, pp. 134-139.
L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra. ERSA: error
resilient system architecture for probabilistic applications. Conference
on Design, Automation and Test in Europe (DATE). 1560-1565. 2010
Wayne Luk, “SELF-OPTIMIZING AND SELF-VERIFYING
DESIGN: A VISION”, Book chapter in: The Future of Computing,
essay in memory of Stamatis Vassiliadis, pp. 69-79, September 2007.
Lars Bauer, Muhammad Shafique, Dirk Teufel, J6rg Henkel: A Self-
Adaptive Extensible Embedded Processor. SASO 2007: 344-350

I. Sander, A Jantsch. Modelling Adaptive Systems in ForSyDe,
DASMOD Workshop on Verification of Adaptive Systems
Kaiserslautern, Germany, September 14th, 2007

Barry Rountree, David K. Lowenthal, Bronis R. de Supinski, Martin
Schulz, Vincent W. Freeh, Tyler K. Bletsch: Adagio: making DVS
practical for complex HPC applications. ICS 2009: 460-469

Dong Li, Bronis R. de Supinski, Martin Schulz, Kirk Cameron and
Dimitrios S. Nikolopoulos. Hybrid MPI/OpenMP Power-Aware
Computing. IPDPS 2010.

S. Feng, S. Gupta, and S. Mahlke, Olay: Combat the Signs of Aging
with Introspective Reliability Management. Workshop on Quality-
Aware Design (W-QUAD) Jun. 2008.

S. Feng, S. Gupta, A. Ansari and S. Mahlke, Maestro: Orchestrating
Lifetime Reliability in Chip Multiprocessors, Proc. Intl. Conf. on High-
Perf. Embedded Arch. and Compilers (HIPEAC) 2010, pp 186-200.
Qiang Liu, George A. Constantinides, Konstantinos Masselos, Peter Y.
K. Cheung: Combining Data Reuse With Data-Level Parallelization for
FPGA-Targeted Hardware Compilation: A Geometric Programming
Framework. IEEE Trans. on CAD of Integrated Circuits and Systems
28(3): 305-315 (2009)

R. Mariani, M. Baumeister and P. Fuhrmann, “A single channel, fail-
safe microcontroller to simplify SIL3 safety architectures in automotive
applications”, Electronic Systems for Vehicles VDI Conference, Baden-
Baden, Germany, October 2007

M.C. Shults, R.K. Rhodes, S.J. Updike, B.J. Gilligan and W.N. Reining,
A telemetry-instrumentation system for monitoring multiple
subcutaneously implanted glucose sensors, IEEE Transactions on
Biomedical Engineering, 1994, pp. 937-942.

P. Atanasov et al., Implantation of a refillable glucose monitoring-
telemetry device, Biosensors & Bioelectronics 12(7), pp. 669~680, 1997
International Technology Roadmap for Semiconductors:
http://www.itrs.net/

Xentium® DSP Core http://www.recoresystems.com/technology/

P. T. Wolkotte, Exploration within the network-on-chip paradigm, PhD
thesis, University of Twente, Enschede, The Netherlands, January 2009.
E. Bolotin et al., QNoC: QoS architecture and design process for
network on chip, Journal of Systems Architecture, vol. 50, 2004.

T. Ahonen et al., CRISP: Cutting Edge Reconfigurable ICs for Stream
Processing, in Reconfigurable Computing - From FPGAs to
Hardware/Software Codesign. Springer, 2011.

K.H.G. Walters,. et al., Multicore SoC for on-board payload signal
processing, NASA/ESA Conf. on Adaptive Hardware and Systems
(AHS), 2011, pp. 17-21.

R.K. Weinstein et al., Methodology and Design Flow for Assisted
Neural-Model Implementations in FPGAs, IEEE Trans. On Neural
Systems And Rehabilitation Engineering, Vol. 15, No. 1, March 2007.
E. L. Graas et al., An FPGA-based Approach to High-Speed Simulation
of Conductance-Based Neuron Models, Neuroinformatics, Vol. 2(4), p.
417-36, 2004.

M.E. Wilinska et al., Simulation Environment to Evaluate Closed-Loop
Insulin Delivery Systems in Type 1 Diabetes, Journal of Diabetes
Science and Technology, Volume 4, Issue 1, January 2010.

C.W. Chia et al., Glucose sensors: toward closed loop insulin delivery,
Endocrinol Metab Clin N America, Vol. 33 (2004), pp 175-195

N. Hardavellas, M. Ferdman, B. Falsafi, A. Ailamaki: Toward Dark
Silicon in Servers. IEEE Micro 31(4): 6-15, 2011.

