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2. Noise 
 
By the end of this section you will be able to: 

• Describe some of the sources of electrical noise and compute their magnitude. 

• Compute noise in multistage amplifiers and know how to minimise it.  

• Describe several methods for eliminating interference, drift and other artefacts in 
measurements. 

  

2.1. Interference  
“Any unwanted sound is noise.”  This is a common but unsatisfactory definition, since it does not 
distinguish between the avoidable and the unavoidable, the fundamental and the artefact. We will 
not define noise, but we will describe it. 
Noise in electronic systems includes contributions from: 

• Mechanical interference  

• Electrical interference 

• Fluctuations in the electromagnetic field 

• Fluctuations in electron movement. 
Mechanical Interference refers to vibrations. Sensitive measurements require sound isolation, 
e.g. solid buildings, –higher floors in building oscillate noticeably! -  anechoic chambers, shock 
absorbent mountings for instruments and sensors, temperature and humidity conditioning of the 
laboratory, among others. 
Electrical Interference refers to the interaction of an electronic system with ambient 
electromagnetic fields. The latter may be due to radio broadcasts, power lines, motors, 
electromagnets, and in general the operation of other electrical and electronic devices. It is 
straightforward –if expensive- to eliminate electrical interference from measurements, by 
grounding and shielding (screen rooms) and meticulous elimination of sources of electromagnetic 
radiation (e.g. fluorescent lights, switching power supplies, AC power lines, electric motors, etc). 
Most of the effort in grounding and shielding is devoted in the elimination of ground loops. 
Ground loops are networks assumed to be at ground potential, but: 

• Current flows through some or all branches of the network , so that ohmic voltages are 
developed 

• Comprise loops threaded by time-changing magnetic flux, so that voltages are induced, 
and the ground terminal instead of being a reliable reference potential becomes a noisy 
antenna. 

Grounding and shielding is an important subject in measurement science and technique. Even 
though it has a solid foundation on Maxwell’s equations, it is considered by many to be a black 
art, which takes years of laboratory experience to master. An excellent book on the subject is 
“Grounding and Shielding Techniques” by Ralph Morrison (4th ed., J. Wiley). 
Interference, once characterised, is modelled as an additional signal source, or even as an extra 
noise contribution. 
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2.2. Thermal noise  
 

2.2.1. Fluctuations and Information 
Fluctuations are a consequence of a fundamental theorem of thermodynamics, the equipartition 
theorem. This theorem states that: 

Each degree of freedom of any system fluctuates with an energy equal to 211/ 2 2 10Bk T J−= i  
at the standard temperature of 290 K. (kB =1.38 x 10-23 J/K , is the Boltzmann constant and T 
the absolute temperature). This means that each degree of freedom contains 1/2kBT free energy. 
A degree of freedom is any quantity free to change. An electron will wander around its average 
trajectory by 3/2kT in 3 dimensions, for example, and a lattice ion will vibrate with the same 
vibration energy. 
The fluctuations described by the equipartition theorem cause electrical noise as we know it. 
Fluctuations are also at the heart of the definition of information. “Information” is intimately 
related to disorder, which a physicist calls the Entropy. Entropy is defined as:  

( )lnB iS k= Ω  

iΩ  is the number of different ways of putting together a many degree-of-freedom system so that 
the same measurements emerge. This difficult concept can be illustrated by a simple example: in a 
system we have N identical particles, and we know N-1 of them are not moving while 1 is 
moving.  Clearly the single moving particle can be any one of the N, so that the entropy of this 

system is ( )lnk N .  If Ω is the total number of ways the system can be put together, i
iP Ω
=
Ω

 is 

the probability the system is in a particular state. Ordered systems have lower entropy than 
disordered systems (there are fewer ways to rearrange their constituents), and for this reason 
Entropy is often loosely defined as “the measure of disorder in a system”. 
Information, on the other hand,  is defined as:  

( ) ( ) ( ) ( )ln ln / ln ln constant /i i i BI P S k= − = − Ω Ω = Ω − Ω = −  

When we pass information from one place to another we reduce the entropy of the receiver. This 
definition reveals that information is, up to an additive constant, the negative of entropy.  
 

2.2.2. The power-SNR tradeoff 
We know from thermodynamics that to change the entropy of something, its energy must change. 
A fundamental relation in thermodynamics connects the change of Entropy to the change in 
energy of a system: 

E T Sδ δ=  
This is true in equilibrium, but for small steady state changes we can attempt to write: 

B
E S IP T k T
t t t

∂ ∂ ∂⎛ ⎞= = = −⎜ ⎟∂ ∂ ∂⎝ ⎠
 

Where P is power flow. Information flow is clearly related to power flow, assuming the system 
remains the same. The transmitter of information acts like a refrigerator, and causes the receiver 
to lose energy: 

I P
t T
∂

∝ −
∂
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Of course, refrigeration cannot be accomplished without the transmitter dissipating power, and 
indeed, it can never be accomplished at a 100% efficiency. We then know that the power 
dissipated at the transmitter must exceed: 

diss diss
I IP kT P c
T T
∂ ∂

> ⇒ =
∂ ∂

 

We can now introduce the Shannon formula which connects the Signal-to-Noise Ratio (SNR) to 
analogue bandwidth and information flow: 

( )2( / sec) ln 1I T bits B S N∂ ∂ = +  

Tthe SNR is understood as the ratio of signal power to noise power. We conclude that: 

( )1//2
cP BkTS

N ∝  

The constant c is system dependant and not known. This equation quantifies the “Power-S/N-
Bandwidth conflict”. This conflict is fundamental. Even though we can approach the limit for c=1 
we will never be able to exceed it. Today’s state of the art digital circuits operate at 

( )2 310 10c O= − .  The lowest power analogue circuits published operate with ( )3 410 10c O= − . 
Digital CMOS is still a significantly lower power technology than analogue micropower. 
Note: As we already mentioned,  strictly speaking, an electronic circuit in which current flows is 
not in equilibrium, and the argument we just presented does not apply. What we just computed is 
the lowest amount of energy necessary to perform a signal processing task, i.e. the dissipation of a 
quantum computer. There is some disagreement in the literature as to what is the lowest energy 
per bit allowed by the laws of nature. In the electronics literature there appears to be an agreement 
with Vittoz who considering RC filters showed that 8c ≥  for each real pole in the filter. The 
physics and mathematics literature converges on that ln 2 0.694c ≥ = , i.e. over an order of 
magnitude lower, and indeed lower than the intuitive c=1 value! 

2.2.3. Johnson noise 
Every resistor generates noise with an independent of frequency power spectral density. The RMS 
open circuit noise voltage noise voltage of the resistor is: 

 4NV kTRB=  (2.1) 

The RMS short circuit current noise is: 

 4 /NI kTB R=  (2.2) 

These statements together suggest that a noisy resistor can be modelled as a Thevenin or Norton 
circuit consisting of a noiseless resistance R together with a Thevenin source (2.1) or a Norton 
source (2.2). 
This is a very powerful theorem which makes no reference to the internal workings of the 
components. This means that the formulas are valid even if the resistance is not a physical 
resistance, for example for a Thevenin resistance! The proof of the Johnson noise formula  is 
rather simple, and is reproduced below to disperse any residual doubts on its validity. 
 

Z0 Z0Z0, l, c
 

Figure 1: Circuit to calculate the Johnson noise. A length of transmission line l is terminated, 
through ideal switches to is characteristic Z0. 
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Proof: In Figure 1, we show a transmission line of length L, which supports travelling waves in 
both directions. The phase velocity on the line is c and the characteristic impedance is Z0. The line 
is kept at temperature T. According to the equipartition theorem, all modes of this line will be 
excited, each with energy 1/ 2 Bk T . Assume now that the line is so long that the wave does not 

have time to reach the end of the line within the observation time. We will only consider the 
travelling waves which are transverse electromagnetic modes (TEM). (It is difficult to show, but 
these are ALL the propagation modes in certain types of waveguides such as lossless coaxial 
cables, as well as being all the modes that can couple to the current flow inside the resistor). The 
transmission line is like a flute. Its modes have nodes at the line endpoints, so that the nth mode is 
at a frequency:         

2n
ncf
L

=       (2.3) 

A TEM line supports two modes at each frequency, one for each polarisation (for example 
horizontal or vertical) of the electric field. According to the equipartition theorem each mode is 
excited with energy: 

 n BW k T=  (2.4) 

The energy stored in the travelling waves in a range of frequencies B between modes n and m is: 

 ( ) ( )2 2
B B n m B B

L LW n m k T f f k T Bk T
c c

= − = − =  (2.5) 

This is the thermal energy stored in the line when the two end switches are open.  
We can then close the two switches. The line is now terminated at both ends with resistors equal 
to its characteristic impedance 0Z held at the temperature T of the waveguide. From transmission 
line theory we know there will be no reflections at the end points; all the energy contained in a 
travelling wave incident to one of the terminations will be absorbed by that termination. The 
terminated line, like the open one, is in equilibrium with its surroundings, and the power absorbed 
by one of the terminations must be generated by the termination at the opposite end. 
This means that the energy stored in the line modes is the sum of the power generated by both 
resistors over the time it take for radiation to travel the length of the line. Symbolically: 

 0 02 ( ) ( )B B
LW P Z P Z Bk T
c

= ⇒ =  (2.6) 

This is the most general statement of the Johnson noise formula, stating that the available noise 
power at the terminals of any resistor is simply BBk T . 

Between a termination resistor and the transmission line we have set up a voltage divider of 
magnitude ½ . The RMS noise voltage between the terminals of the resistor is therefore given by 
the familiar Johnson noise formula 4NV kTRB= . 

The spectrum of Johnson noise is white, that is, the power spectral density is independent of 
frequency. Of course, the spectral density must decrease beyond some frequency. Because of the 
quantised nature of light,  modes of frequency such that the mode photon energy hf  is 
comparable to kT are less likely to be excited, and there should be an exponential reduction of the 
Johnson noise power spectral density at high enough frequencies. The roll off starts roughly at 

/ 6Bf k T h THz= �  (h is Plank’s constant, 346.636 10h Js−= i ).  
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If the quantised energy of a photon is taken into account the Johnson noise formula reads: 

2
/4

1Bn hf k T

hfV RB
e

=
−

 

If the frequency is very small, Bhf k T� , then  
2

2 1 14 1
2 6n B

B B

hf hfV k TRB
k T k T

⎛ ⎞⎛ ⎞
⎜ ⎟− − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

� "  

In practice the Johnson noise formula breaks down at slightly lower frequencies:  when the 
assumptions we made to derive it are no longer valid. We assumed that the resistor is 
dimensionless. So we expect some deviation from the Johnson formulae when the wavelength is 
small enough that the resistor can support internal electromagnetic modes, i.e. when the resistor 
maximum dimension is similar to half the wavelength λ . This can happen at frequencies of 10s to 
100s of GHz.  

2.2.4. Shot Noise 
Current is due to the transport of discrete electrons. Fluctuation in their kinetic energy will 
modulate the arrival rate of electrons at a node where current is measured. A counting argument 
leads to a formula for the shot noise, which is also spectrally white:  

Assume a current I  flows into a node. This means that over a time τ  τ
e
In =  electrons must 

arrive at the node. The current is then /I ne τ=  
This number n  is subject to fluctuations governed by Poisson statistics, so it is uncertain by: 

 n nΔ ∝  (2.7) 

Electrons have spin and the arrivals are correlated in pairs, do that the square variance is double: 

 2n nΔ =  (2.8) 

It follows that the RMS fluctuation of current over a bandwidth B is: 

 2 2I eIBΔ =  (2.9) 
Shot noise has a constant power spectral density. Like Johnson Noise, shot noise is spectrally 
white, up to frequencies of  the order of the electron arrival rate, when the averaging argument 
breaks down. 

 0
If
e

�  (2.10) 

For a current of 1nA this frequency is a few GHz. 
Although we assume shot noise is modelled by a pure current source, we have to observe 
conservation of energy, which implies that the internal impedance of this source needs to be finite, 
even if it turns out to be very big.  To calculate the correct Norton impedance of a shot noise 
source, we can use the Eistein relation. This states that the ratio of power to current carried by an 
electron gas needs to be (the numerical value for room temperature): 

25P kT mV
I e
= =  

This would be half the open loop voltage of the noise source, so, the Norton resistance of a shot 
noise source IN is simply: 
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2 B
N

N

k TR
eI

=  

A numerical estimate for the Norton impedance of the shot noise source associated with a 1A 
current source over a 1GHz bandwidth is a few kΩ . At current levels encountered in 
microelectonics this impedance is several MΩ . 

2.2.5. Flicker Noise 
A fundamental source of noise in any physical system containing a large number of degrees of 
freedom  has a power spectral density : 

 ( ) kP f f −∝  (2.11) 

The constant k is ideally k=1, and in practice it is close to unity. This type of noise is called 1/f 
Noise, flicker noise or pink noise. 1/f noise is found in the frequency spectra of waves, winds, 
movements of heavenly objects, the flicker of the light intensity of a candle flame, and indeed in 
voltage and current noise sources in electronics. There are numerous arguments in the literature 
deriving pink noise in all kinds of physical systems, especially transistors. Most of these 
arguments are plausible. However, we need to remember that this is a universal phenomenon 
whose explanation is well beyond derivations based on charge transport in MOSFETs.  
The general explanation of the origins of flicker noise remains one of the great unsolved problems 
in theoretical physics, and many believe that such an explanation is worth a Nobel Prize. The 
power spectral density of pink noise increases as frequency is reduced, and at low enough 
frequencies it dominates Johnson and shot noise. This is the reason that sensitive DC 
measurements at the level of nV and pA require enormous skill and very specialised equipment to 
perform. 
The absolute magnitude of pink noise is an empirical constant. It is usually presented as the 
corner frequency, the frequency at which the PSD of pink noise equals that of white noise: 

 ( )pink C B C
C

P f kT k Tf
f
α α= = ⇒ =  (2.12) 

The usual model for pink noise is then: 

 ( ) B C
pink

k TfP f
f

=  (2.13) 

Pink noise is largely responsible for the “phase noise” in oscillators. As Rohde has shown in his 
book on microwave synthesisers the output of an oscillator is effectively DC power mixed 
(upconverted) into the output frequency. To model pink noise, we add it as an additive, 
uncorrelated correction to Johnson or shot noise. Since the power spectral density this mechanism 
can deliver to a load is Ppink , the voltage amplitude we must employ to model its contribution 
through an impedance R is: 

2pink pinkV P R=  

2.3. Modelling noise 
Most electronic systems include noise contributions from several devices. To correctly calculate 
the noise we need to account for both the system’s deterministic electrical behaviour and its noise 
contribution. 
Any noisy device can be represented as a noiseless version of itself properly connected to suitable 
noise voltage and current sources. A resistor, for example, is represented as a Thevenin circuit of 
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a Johnson voltage source in series with its resistance, or a Johnson current source in parallel with 
its resistance. Current sources (whether they are independent or dependent sources) may be 
modelled as shunt connections of their nominal sources with the shot noise sources. Pink noise is 
modelled by a voltage or current source connected to the circuit through a low pass filter. 

2.3.1. Addition of noise sources. 
Two noise sources in a network may depend on each other, but most of the time they are  
statistically independent. We say that two sources f and g are independent if their cross-
correlation is zero for all times: 

 ( ) ( ) ( )*
,f gc f t g t dtτ τ

∞

−∞
= +∫  (2.14) 

We use the correlation theorem which relates the Fourier transforms of c, f and g: 

( ) ( ) ( )*C F Gω ω ω=  

If the cross-correlator does not vanish we say the sources are correlated, which in practice means 
that one is proportional to the other. This now looks like the magnitude of the projection of f on g. 
We can normalise the correlator to get the “coherence function”, essentially a projection operator 
P so that  P=1 for perfectly correlated sources, and P=0 for uncorrelated sources: 

( ) ( ) ( )
( ) ( )

*

, ,
F G

P F G
F G

ω ω
ω

ω ω
=  

The amplitudes of statistically independent noise sources add like orthogonal vectors. If 
1 2,n nV V are the voltage amplitudes of two voltage noise sources connected in series, the amplitude 

of the total noise voltage is: 
2

2
2

1
2

nnn VVV +=  
Similarly, if  1 2,n nI I the amplitudes of two current noise sources connected in parallel, the 
amplitude of the total noise current is: 

2
2

2
1

2
nnn III +=  

When the sources are correlated, then Kirchhoff’s laws apply as usual and the amplitudes of series 
voltage sources (or the amplitudes of parallel current sources) add, eg. 

 1 2n n nV V V= +  (2.15) 

For two partially correlated sources we can write an expression similar to the cosine addition rule 
for vectors in a plane: 

( ) ( ) ( ) ( ) ( )( )2 2 2 *
1 2 1 22 Ren n n n nV V V V Vω ω ω ω ω= + +  

It is easy to verify that this expression takes the correct  values if the two voltages are equal or 
orthogonal to each other.  

2.3.2. Excess noise 
A physical device always contributes more noise power than predicted by fundamental 
considerations. To give an example, material defects inside a real resistor act as additional noise 
generators and contributing noise power beyond that predicted by the Johnson formula. It is 
impossible to predict theoretically the actual noise of a real device, so it is common to lump all 
noise contributions beyond Johnson, shot and flicker noise into a single empirical constant, the 
Excess Noise Ratio (ENR). ENR is defined as the ratio of actual to theoretical noise power: 
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 ideal

actual

N
N

ENR =
 (2.16)

 

ENR is always greater than unity. In very low noise instrumentation engineering it is a good 
idea to check on the ENR values of components used. These are rarely stated by component 
manufacturers, but estimates have been published for different types of components. It is, for 
example known that carbon resistors are noisier than metal film resistors of the same value. 

2.3.3. Added noise, noise factor, noise figure and noise temperature 
Amplifiers always generate noise internally. The excess noise contributed by an amplifier, gives 
rise to the concept of the Noise Factor. The nose factor is defined as the ratio of the total noise 
power at the output of the amplifier to the output noise power due to the noise injected by the 
signal source.  

 Total output noise power
Output noise power due to source

F =  (2.17) 

By dividing by the output signal power we get: 

 , ,

, ,

N out N outIN in

N in out N in out

P PGS SNRF
GP S GP SNR

= = =  (2.18) 

So the noise factor is the Signal-to-Noise Ratio (SNR) of the amplifier at its input divided by the 
SNR at its output. The amplifier is assumed to be driven by a signal source which contains a  
Thevenin impedance R. R is assumed to be held at the “standard room temperature”, namely 
290K (17oC), and contribute Johnson noise. It appears the strange temperature of 290K has been 
chosen as the standard because at 290K, 214 10kT J−= ⋅ i.e. a nice round number.  
The noise factor is symbolised by F, the output noise power added by the amplifier by Na and Si, 
So, Ni, No, G , are the input and output signal power, and input and output noise power and power 
gain of the amplifier respectively. The noise factor is defined as: 
By definition, the noise factor F is given by: 

 i

o

SNRF
SNR

=  (2.19) 

But we can also take into account the function of the amplifier: 

 o i
o

o i a

S GSSNR
N GN N

= =
+

 (2.20) 

Where iS  and iN are the input signal and noise powers, oS  and oN  the output signal and noise 
powers, and aN the output referred noise power added by the amplifier. Substituting (2.20) into 
(2.19) we get: 

 1 a

i

NF
GN

= +  (2.21) 

The noise factor is clearly always greater than one. Usually the term  Noise Figure  is used to 
describe the deterioration of the SNR of a signal as it goes through an amplifier: 

 FN log10=  (2.22) 

The expression 2.22 for the noise factor gives rise to another way of modelling a noisy amplifier. 
The noise temperature of an amplifier is the temperature of a hot source connected at the input 
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of a noiseless copy of the amplifier which would result into the same output noise as the noisy 
amplifier. We define then the added noise as a B NN Gk T=  and the input reference noise as 

0i BN k T= . The noise factor F and noise temperature TN are related by: 

( )0
0

1 1N
N

TF T T F
T

= + ⇒ = −  

The noise temperature is used to describe extremely low noise amplifiers. Noise temperatures of 
50K are quite common in low noise applications. Note that the noise temperature is not the 
physical temperature of the amplifier. 
These equations give a first hint of why a low noise figure is considered important, and why a 
high gain is often associated with a low system noise figure. Noise figure is, however, overstated 
in its importance in a low noise system design. It is the correct balance between noise figure and 
gain that is important rather than a low noise figure itself. It may not yet be obvious, but an 
amplifier with a noise figure (in dB) numerically greater than its gain (in dB) is not useful at all. 
Indeed, it can be proven that there exists a combination of passive components which would 
perform better  than an amplifier with lower gain than noise factor. The most obvious, of many 
passive devices which would outperform, at the system level, such an amplifier, is an impedance 
matching transformer. 
There is another weakness in the concept of noise factor. There is no mention of how well is the 
source impedance matched to the input impedance of the amplifier in question. Usually F is 
specified at some source impedance level, for RF circuits 50 Ohms (75 ohms for VHF), and 
depends strongly on the actual source impedance. We will discuss this point in some detail 
shortly. 

2.3.4. The Friis cascade formula 
Assume now we have a collection of amplifiers, with power gains 1 2, , , nG G G… and noise factors 

1 2, , , nF F F… . The overall noise figure of a cascade of these amplifiers, with 1G  connected to the 
input and driving 2G , etc, is given by the Friis formula: 

 
32

1
1 1 2 1 2 1

1 11 n

n

F FFF F
G G G G G G −

− −−
= + + + +"

"  (2.23)
 

Or, the cascade of N amplifiers has a noise factor related to a cascade of  N-1 amplifiers and the 
Nth as follows: 

 
( ) ( )

( )
1

1

1N
N N

N

FF F
G−

−

−
= +

      (2.24)
 

The parentheses in the subscript signify a collection of amplifiers up to, and including the one 
indicated. For example, ( )1NG −  is the gain of the chain of the first N-1 amplifiers, but NG  is the 
gain of the Nth amplifier.  
To prove the Friis formula we need to use induction: 

• If there is only one amplifier, the statement is obviously true, (1) 1F F= . 

• Assume the formula is true for N-1 amplifiers. 

• Adding the nth amplifier to the cascade means that: 
The output signal power of the chain is: ( ) ( ) ( )1i i No N N NS S G S G G−= =  

The output noise power of the chain is: ( ) ( ) ( )1i N aNo N N a NN N G G N N−= + +  
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We can relate the noise added by the first N-1 amplifiers to their noise factor and the input 
noise power: 

( ) ( )( ) ( )1 1 11 ia N N NN F G N− − −= −     
(2.25)

 

The output SNR of the N amplifier chain is: 

( )
( )

( ) ( )( ) ( )

( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )

1

11 1

1
1 1

1 1

1
1

1

1

1  since 1

i N iN N
out N

i aNN Ni N i aNN N N

i aNN N N N iin i aN
N N N

i i i N i Nout N N N N

N
aN N N iN N

N

S G G S G
SNR

G F N NN G G F G N N

G N F N F G NSNR S NF F F
SNR S G N G N G G N G

FF F N F G N
G

−

−− −

−
− −

− −

−
−

= = ⇒
++ − +

+ −
= = = + = + ⇒

−
= + = −

 

This proves the Friis formula. 
We did not need to make any assumptions about terminal impedances and impedance matching. If 
the amplifiers are mismatched the same mismatch factor applies to both signal and noise, so that 
in the SNR  calculation this mismatch factor cancels. The noise factor is, therefore, the same as it 
would be if each amplifier in the entire chain was impedance matched, and the gain of each 
individual stage was its maximum available gain for unconditionally  stable stages, and the 
maximum stable gain for conditionally stable stages. This is called the “associated gain” in RF 
circuit design. As we shall see, the noise factor used for each stage in the calculation depends on 
the source impedance each stage sees, and has a minimum value for a particular optimum source 
impedance. The minimum noise factor of each stage can be used to obtain the minimum noise 
factor for the chain, and then the source impedance correction can be used over the entire 
amplifier chain treated as one. 

2.3.5. The Noise Measure 
The noise factor of the first amplifier in the chain appears to dominate the sum. This is not exactly 
so. In practical radio applications we may need a cascade of several amplifiers to realise typical 
gains of 60-100dB. In long cascades of identical amplifiers the noise factor rapidly converges to 
the Noise Measure, namely the noise factor of an infinitely long cascade of identical amplifiers: 

 ( )2
0

1 1 1 11 1
1n

n

F F FGM F F
G G G G

∞

=

− − −
= + + + = + − = =

−∑" "  (2.26) 

it follows that 

 ( )1 1FG M G− = −  (2.27) 

We can now compare the noise factors of the two permutations of two amplifiers, 
2

12 1
1

1FF F
G
−

= +  and 1
21 2

2

1FF F
G
−

= + : 

 ( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )

1 1 2 2 1 2 2 2 2 1 1 1
12 21

1 2

2 1 1 1 2 2 2 2 1 1

1 2

2 1 1 1 2 2 1 2
1 2

1 2 1 2

1 1 1 1

1 1 1 1 1 1

FG G F G G F G G FG GF F
G G

G FG G F G F G FG
G G

G FG G F G G G
M M

G G G G

− + − − +
− = =

− − − + − − −
= =

− − − − − − −
= −

 (2.28) 
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We have just proven that the noise factor of a cascade of two amplifiers is minimised if we put the 
one with the lowest noise measure first. Clearly, the amplifier with the lowest noise measure is not 
necessarily the one with the lowest noise figure, nor the one with the largest gain! As we shall see 
later, the noise factor depends on the source impedance. The minimum noise factor is almost 
never obtained for an impedance matched source. Source impedance matching only results in 
maximum gain. A different source impedance leads to minimum noise factor, and yet a different 
one minimises the noise measure!  
Finally, a very useful lemma for high frequency measurements is that the noise figure of an 
attenuator (or a lossy connection, for that matter) is numerically equal (in dB) to the attenuation.  
The proof is simple and depends on the assumption that the noise factor is defined for a device 
driven by a thermal resistive source, and that impedance matching is maintained both at the input 
and at the output of the Device Under Test (DUT: acronym introduced by Agilent, now in 
universal use in electrical engineering). 
Assume that the source is of resistance R, and the attenuator is perfectly matched so its output 
impedance is R again. Then,  

 1i i B

o i B

SNR S k TBF
SNR AS k TB A

= = =  (2.29) 

A thought experiment confirms that this result is correct. If we enclose the source and the 
attenuator in a black box, the thermal noise power of the combination will only depend on the 
temperature, and will have to be equal to the noise power of the source. The signal power, on the 
other hand, is attenuated. 

2.4. Measurement of Noise 
Measurement of noise is not simple. The signal levels that need to be measured are of the order of 
the Johnson noise of a resistor into a matched load is -174 dBm/Hz (dBm is dB referred to a 
power level of 1mW). For example, the noise power that needs to be measured in order to 
characterise a device with noise factor F=10  and power gain of 1000 (30dB) over a 1MHz 
bandwidth is only 40pW!  

2.4.1. Spectrum Analyser 
One would be tempted to think that the noise factor can easily be measured with a spectrum 
analyser. This is not the case, except when the noise factor is extremely high. The noise floor of 
most spectrum analysers is so high (the best instruments may have an input referred added noise 
of -140dBm/Hz, i.e. a noise factor of 103) that it usually masks the noise we are trying to measure, 
leading to big errors. 
We can model the spectrum analyser as a noisy amplifier followed by an ideal spectrum analyser 
(i.e. an ideal narrow band power meter). 
The total noise factor of the amplifier we try to measure and the spectrum analyser will be: 

1SPECAN
DUT

DUT

FF F
G

−
= +  

Spectrum analysers have typical noise factors of 3 410 10− (30-40dB). To make a 1% accurate 
measurement the DUT needs to have a gain greater than 50-60dB. Unless we are measuring an 
entire radio front end such large gains are not common. The measurement gets even more difficult 
if, for example we try to measure the noise factor of a low noise GaAs HEMT which can easily be 
as low as F<1.1 (N<0.35dB), with an associated gain of, perhaps, 20dB. In such a case the 
spectrum analyser can contribute over 20dB to a 0.3 dB measurement! 
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2.4.2. Noise Figure Meter 
Common ways of measuring noise in high frequency electronics are based on a simple 
observation: The noise added by a device cannot be correlated to the noise power supplied to its 
input. We therefore know how to compute the sum of any noise applied to its input and the DUT’s 
added noise. 

 
Figure 2: Noise Factor measurement. A “cold” and a “hot” source of the same output 
impedance are used as inputs to the device under test. 

 Then, by successively applying a low source noise power NLO and a high source noise power NHI  
to the DUT input with no other signal present, as in fig. 2.2, the output noise powers will be 
respectively: 

 aLO
LO

oaHI
HI

o NGNPNGNP +=+= ,  (2.30) 

From these two measurements both Na and G are easily determined. The noise source is usually 
an avalanche diode operated “cold” i.e. is equivalent to a resistor at room temperature (little or no 
bias current) and “hot” i.e. well into the avalanche regime, where its noise power is equivalent to 
that of a resistor at a temperature of 30000 K.  
Despite the apparent simplicity of this method and the availability of dedicated automatic 
equipment engineered to perform it, this is an extremely difficult measurement. Any noise 
measurement procedure measures the cascade of the measurement system, cables, connectors and 
the Device Under Test. Cables, fixtures and connectors are unknown and often irreproducible 
attenuators. As such they contribute to the overall system noise factor and undermine the 
sensitivity and resolution of the measurement. 
 

2.5. Theory of noise in amplifiers 

2.5.1. Noise model of an amplifier 
We can combine the results of section 2.3 with some circuit analysis to analyse general amplifiers. 
A noisy amplifier can be modelled as a noiseless amplifier with two noise sources, a voltage and a 
current noise source connected to its input as in figure 3. These two sources are not necessarily 
uncorrelated with each other.  

 
Figure 3: Noise model for an amplifier. The noise contributions can be modelled as two 
uncorrelated noise sources at the input of an ideal noiseless amplifier. 
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We shall prove shortly (see T Lee, chapter 13) that the noise factor of an amplifier depends on the 
source impedance driving it.  To do this we draw the driven amplifier as in Figure 4. The 
amplifier is driven by a Norton circuit describing the Johnson noise of the Ys source. The noise 
power of the source is assumed to be uncorrelated to either of the amplifier internal noise sources, 

ne and ni . Please observe that we have not made any claims about ne and ni  being uncorrelated.  

 

Figure 4: Noise model for an amplifier driven by a noisy Johnson source Ys 

 
 

2.5.2. Noise factor of an amplifier 
To analyse this network we need a Norton-to-Thevenin transformation of ,s Si Y  then add ne to the 
Thevenin source /S Ni Y , and then a Norton-to Thevenin transformation. The input noise power is 

proportional to 2
n s ni Y e+ , while the input signal power is proportional to 2

si . 

The noise factor is by definition (note that the input impedance of the amplifier cancels!): 

 
2 2

2

s n s n

s

i i Y e
F

i

+ +
=  (2.31) 

In this equation x   is the expectation value of x . 

We can then express  ni  as the sum of two sources, c c ni Y e= correlated to  ne  by a correlation 
admittance cY and ui uncorrelated to ne . Then, we can write : 

 n c u c n ui i i Y e i= + = +  (2.32) 

We can rewrite (2.31) using (2.32) as: 

 
( ) 2 2 2 2

2 2
1 1

u c s n u c s n

s s

i Y Y e i Y Y e
F

i i

+ + + +
= + = +  (2.33) 

we can model the noise sources as equivalent Johnson sources. To do this, we define: 

C c cY G jB= +  

s s sY G jB= +  

 

2

2

2

4

4

4

n n

u u

s s

e kT fR

i kT fG

i kT fG

= Δ

= Δ

= Δ

 (2.34) 
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By plugging into the definition for F (2.30): 

 
( ) ( )( )2 2

1
n c s c s u

s

R G G B B G
F

G

+ + + +
= +  (2.35) 

cY is a characteristic of the amplifier we are considering, and F is a quadratic surface (paraboloid) 
in sY . F has a local minimum in the complex sY  plane at an optimum admittance: 

opt opt optY G jB= + . 

2.5.3. Minimum F and optimum source admittance 
The noise factor has a minimum for an optimum value of  s optB B=  

 opt cB B= −  (2.36) 

and an optimum value of s optG G= such that  

 20 /
s opt

opt c u n
s G G

dF G G G R
dG

=

= ⇒ ⇒ = +"  (2.37) 

 
By substitution, this minimum noise factor is: 

 
( ) ( )

2

2
min 1 1 2 /n c opt u

n c u n c
opt

R G G G
F R G G R G

G
+ +

= + = + + +  (2.38) 

From (2.37) we note that 

 2 2 /c opt u nG G G R= −  (2.39) 

So that (2.35) can be rewritten as : 

 ( ) ( )2 2

min
n

s opt s opt
s

RF F G G B B
G

⎡ ⎤= + − + −⎢ ⎥⎣ ⎦
 (2.40) 

The subscript S denotes the components of the source  complex admittance Y. The amplifier’s 
noise behaviour is completely characterised by  

• the optimum source admittance optY  which results to a minimum noise factor minF ,  

• the minimum of the noise factor, minF , and 

• the “noise resistance” NR describing how rapidly the noise factor increases for a deviation 
from the optimum source impedance.  

Even though they can, in principle be calculated from the amplifier model, min ,  and N optF R Y are 
measured and no effort is made to calculate them.  Eq 2.39 is then used to predict the noise figure 
for a given source admittance. 
Equation (2.40) describes a family of constant noise factor circles on the source admittance plane. 
The optimum noise factor is usually achieved at a different source admittance than the maximum 
gain is obtained. The optimum noise measure is obtained at yet a different source admittance. 

2.5.4. Noise factor of ideal electronics 
A lot of the discussion in elementary electronics revolves around the use of ideal signal sources 
and ideal amplifiers. Realistic sources with finite source impedance of admittance are treated as 
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something of a nuisance; the finite source impedance treated as “parasitic” implying that it makes 
engineering more difficult than it would otherwise be.  
Careful examination of the noise factor of an amplifier (any amplifier!) driven by an ideal voltage 
source shows that: 

 ( ) ( )2 2

min, ,
lim lim

s s s s

n
s opt s optG B G B

s

RF F G G B B
G→∞ →∞ →∞ →∞

⎡ ⎤⎡ ⎤= + − + − = ∞⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
 (2.41) 

This means that an ideal voltage source driving an amplifier makes the amplifier operate with an 
infinite noise factor. As a result the SNT at the amplifier output vanishes!. Something similar 
happens if we drive an amplifier with an ideal current source: 

 ( ) ( )2 2

min0, 0 0, 0
lim lim

s s s s

n
s opt s optG B G B

s

RF F G G B B
G→ → → →

⎡ ⎤⎡ ⎤= + − + − = ∞⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
 (2.42) 

We can now consider the output of the amplifier. This acts as the source to whatever it dives, and 
consequently, an amplifier with an ideal voltage (or current) output stage forces the noise factor of 
the instrument it drives to be infinite. The Friis cascade formula suggests that unless the amplifier 
has infinite gain, which it cannot have, the system noise factor will be infinite.  
A final question remains concerning idealities: What if the amplifier has an ideal input and is 
driven by a finite impedance source?  The definition of the noise factor: 

 i

o

SNRF
SNR

=  (2.43) 

Gives the answer. The input circuit is a voltage divider between a Thevenin source and the 
amplifier input impedance. The input signal power to the amplifier is: 

 2 2*
, 2 2Re Re Rein in

s in
in s in s

Z YP iv I V
Z Z Y Y

= = =
+ +

 (2.44) 

Clearly the input signal power becomes zero when the input resistance ( Re inZ ) or admittance 
( Re inY ) of the amplifier vanishes. A purely capacitive input admittance (e.g. the gate of an 
idealised FET) is not any better. The output signal power of the amplifier must be proportional to 
the real (not reactive!) power absorbed from the source, and is zero in all these ideal cases. The 
output SNR, as a result,  vanishes. Then  we can write: 

 
0 0

lim lim
o o

i

SNR SNR
o

SNRF
SNR→ →

= = ∞  (2.45) 

This discussion explains why all electronic amplifiers engineered to have near ideal terminal 
characteristics are guaranteed to have very poor noise performance. The physics, possibly 
obscured by the mathematical derivation, is that the noise factor is optimised when the signal 
power transferred to the amplifier is maximised relative to the noise power coupled from the 
source into the input of the amplifier. Signal power, we have already argued, is the vehicle on 
which the information contained in the signal is carried.  

2.6. Optimising the SNR of a measurement 
Any signal processing (such as amplification, sampling, filtering) adds noise to a measurement. 
The highest signal to noise ratio in a system is found, therefore, at the sensor terminals.  
Yet, it is possible to reduce the apparent noise in a measurement. Although thermal noise cannot 
be eliminated, the total noise power is proportional to the measurement bandwidth. By restricting 
the measurement bandwidth to what is absolutely essential the signal to noise ratio can be 
optimised. If S is the total signal power and B the measurement bandwidth, 
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SSNR
kTB

∝  

We recall that the SNR is a ratio of powers, so we can conclude that the voltage noise amplitude 
scales as: 

1
NV

B
∝  

A low noise measurement apparently requires a long time, 1/ BτΔ ∝ , to perform. This is only 
true for low pass measurements. In a bandpass measurement of bandwidth B centred at a carrier 
frequency cf  the characteristic time required for a measurement is much smaller: 

2
c

B
f

τΔ ∝  

For this reason, the most sensitive heterodyne receivers perform upconversion, rather than 
downconversion at their first stage. Extremely narrowband band-pass filters are difficult to 
engineer at relatively low frequencies (less than 1GHz). At higher frequencies it is relatively easy 
to exploit molecular resonances in certain materials to make extremely narrowband filters. 
The need to reduce the measurement bandwidth is the theoretical foundation of all modulated 
measurements, including chopper amplifiers, and interferometers. It is also the foundation of 
telecommunications, since a typical communications link is a modulator-demodulator pair. A 
radio receiver is simply an extremely sensitive, noise optimised, voltage meter!  
A more damaging kind of “noise”, usually of much higher power than thermal noise, is 
interference. Interference can also be reduced by modulation and filtering, especially when the 
interference is known to be band limited.   
Finally, signal and noise are always statistically independent. Statistical correlation techniques 
can be used to reduce the noise in the output of a measurement. Much of instrumentation science 
is concerned with the realisation, in hardware, of statistical recipes.  
A simple example of exploiting statistics is the use of two identical instruments to measure a 
signal. The two instruments will show at their output respectively: 

1 1

2 2

i i a

i i a

V GS GN N
V GS GN N
= + +
= + +

 

The SNR of 1V  or 2V  alone is 
2

1 2 2 2
i

i a

GS
SNR SNR

GN N
= =

+
 

While the SNR of 1 2V V+  is: 
2 2

1 2 12 2 2 2

4
4 2 / 2

i i

i a i a

GS GS
SNR SNR

GN N GN N+ = = <
+ +

 because 1 2and a aN N are uncorrelated! 

This technique is used in low noise preamplifiers where a number of low noise transistors 
connected in parallel are used for the input stage to reduce noise. 
If a signal is slowly varying, all the noise of two successive sampled measurements will be 
uncorrelated. The average of two such measurements will have an enhanced SNR! In the 
“correlated double sampling” technique, two measurements are performed in rapid succession and 
subtracted: One is a null measurement, measuring only source noise, while the other is the 
required measurement. CDS has the advantage of  reducing autocorrelated noise. 
We will study a number of noise reduction techniques in more detail later in the course. 


