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Abstract— This paper presents a new method for solving
a linear discrete-time finite horizon optimal control problem
(FHOCP) with quadratic cost and linear constraints on the
states and inputs. Such a FHOCP needs to be solved online,
at each sampling instant, in predictive control. In order to
solve such a FHOCP, it is necessary to solve a quadratic
programming (QP) problem. The proposed technique uses an
inexact interior-point method (IIPM) to solve the QP problem.
This new technique is computationally more efficient than
the Riccati Recursion method of Rao, Wright and Rawlings
(Journal of Optimization Theory and Applications, 1998),
when measured in terms of the number of floating point
operations. The computational advantage is obtained by the
use of an inexact Newton method, and with the use of novel
preconditioners in the minimum residual (MINRES) method.
The computational performance of this method is demonstrated
by numerical results.

I. INTRODUCTION

Predictive control has been used successfully for plants
where the process dynamics is slow [1]. However, recently
attempts have been made to show its efficacy in fast
processes, such as aircraft and diesel engine, facilitated by
the rapid growth in computing power [2], [3]. The problem
is to find, over a finite horizon, a sequence of optimal control
inputs for a linear discrete-time system with quadratic cost
and mixed inequality constraints on the states and control
inputs. At each sampling time, only the first control input is
applied to the plant. At the next time step, the same procedure
is repeated using the new state of the plant. The aim of
this work is to reduce the computational cost of solving the
resulting finite horizon optimal control problem.

To extend the use of predictive control to fast systems,
two approaches exist; in the first approach, a large number
of QPs are solved off-line for all possible initial states of the
plant, then an explicit function or lookup table is formed.
The online control computation then just reduces to the
simple evaluation of that explicit function [4]. The major
drawback in this approach is that the number of entries in
the explicit function grows exponentially with the horizon
length, number of states and control inputs. In the second
approach a QP problem is solved online [5]. This approach
does not have the limitation on small number of states and
inputs. In this paper, we adopted this approach.
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In large-scale optimization problems inexact-Newton
methods have been proposed to reduce the computational
effort in the solution of the nonlinear optimality condi-
tions [6], [7]. The main idea of this method is to terminate the
linear solver early with less accuracy in the initial iterations
when we are far from the optimal solution. In this paper, we
investigate the efficacy of these methods in solving a finite
horizon optimal control problem (FHOCP).

Our focus on iterative methods, such as the minimum
residual (MINRES) method [8], is mainly due to two rea-
sons [9]. Firstly, iterative methods have a higher ratio of
addition and multiplication operations to division and square
root operations, compared to direct methods, hence are more
efficient from a hardware point of view. Secondly, in iterative
methods, we can trade-off accuracy with computational time.

The main contribution of this paper is the reduction
of the computational cost in the solution of the FHOCP
with the development of new and effective preconditioners.
The second contribution is the construction of a low-cost,
approximate coefficient matrix appearing in the linear system
in an inexact interior-point method (IIPM), which reduces the
computational cost, and provides a perturbed linear system
with low rank perturbation matrix. The final contribution is
the development of a result that states that the solution of
this perturbed linear system, with a perturbation matrix of
rank r∆, can be computed using a preconditioned MINRES
method in at most r∆ + 1 iterations.

Notation: For a matrix A > 0 (≥ 0) means that A is
positive (semi-positive) definite and for vector x < 0 (≤ 0)
means that each element of x is negative (non-positive). For
a set X , card(X) denotes the number of elements in X . The
symbol ⊗ represents the Kronecker product.

II. PROBLEM DESCRIPTION

Consider a discrete-time linear time-invariant system of
the form

xi+1 = Axi + Bui, (1)

where xi ∈ R
n is the state vector and ui ∈ R

m is the input
vector at the i-th time instant. Let x = x0 ∈ R

n be the mea-
surement or estimate of the state at the current time instant.
The objective is to find, over a finite horizon of length N , a
sequence of optimal control inputs u0, . . . , uN−1 subject to
equality constraints (1) and the inequality constraints

Jixi + Eiui ≤ di, i = 0, . . . , N − 1, (2a)
JNxN ≤ dN , (2b)



while minimizing the following quadratic objective function

xN
T PxN +

N−1∑

i=0

(
xi

T Qxi + uT
i Rui + 2xT

i Mui

)
(3)

with R > 0, Q − MR−1MT ≥ 0 and P ≥ 0, Ji, JN ∈
R

l×n, Ei ∈ R
l×m, Q, P ∈ R

n×n, R ∈ R
m×m, M ∈

R
n×m.
To solve the above problem the vector of unknowns is de-

fined as θ :=
[

xT
0 uT

0 xT
1 uT

1 · · · uT
N−1 xT

N

]T

.
The above problem can be converted to a QP problem,

which can be defined as:

min
θ

1

2
θT Hθ subject to Fθ = f(x), Gθ ≤ d, (4)

where θ ∈ R
nθ , H ∈ R

nθ×nθ , F ∈ R
ne×nθ , G ∈ R

ni×nθ

with nθ = (n+m)N +n, ne = n(N +1) and ni = l(N +1)
is the number of inequality constraints. The matrices H, F, G
and the vectors f, d are defined in the Appendix. To simplify
the notation, the (x) is omitted in vector f(x).

To solve the QP problem two approaches are used,
namely active set methods [10] and interior point methods
(IPMs) [11], [5]. We focus on IPMs because they have poly-
nomial computational complexity while active set methods
have exponential complexity in the worst case [11].

III. INTERIOR POINT METHODS
In this section we review the ideas in interior point

methods [11]. The Karush-Kuhn-Tucker (KKT) conditions
of (4) are

Hθ + F T ν + GT φ = 0, (5a)
Fθ − f = 0, (5b)

−Gθ + d − s = 0, (5c)
ΦS1ni

= 0, φ, s ≥ 0, (5d)

where ν ∈ R
ne and φ ∈ R

ni are called dual variables,
s ∈ R

ni is a vector of slack variables, 1ni
∈ R

ni is a
vector of ones and Φ, S are diagonal matrices defined by
Φ := diag(φ), S := diag(s).

An IPM which uses an inexact Newton method to solve
the nonlinear equations (5) is called an inexact interior
point method. An infeasible and inexact IPM is described
in Algorithm 1 for a QP problem. This is an extension of
the infeasible-path-following IPM (Algorithm IPF) of [11],
which was designed for a linear programming problem.

We refer to the while loop of Algorithm 1 as the main
loop of the IIPM, and the loop within the MINRES method
as the inner loop of the IIPM.

In the IIPM the linear system (6) is solved with less
accuracy in the initial iterations as depicted by the decreasing
function ηk. Therefore, direct methods, which solve the
linear system exactly, are not applicable here. Since Ak

is banded, symmetric but indefinite, the minimum residual
(MINRES) iterative method is proposed [12]. We focus
on an inexact IPM, because the total number of floating-
point operations needed to find the solution to (4) can be
reduced significantly by using an inexact method to solve (6),

Algorithm 1 Inexact Interior Point Method (IIPM)
Input:

• H, F, G, f, d
• Initial guess θ0, ν0, φ0 > 0, s0 > 0, σ ≥ 1
• Tolerance ε > 0

Output: Optimized θ.

Algorithm:
1: Set k = 0, and compute µ0 := (φ0)T s0

ni
and e0

tol := ‖b0‖
2: while µk < ε and ek

tol < ε do
3: H̃k := H + GT W kG, where W k := Φk(Sk)−1 is a

positive diagonal matrix.
4: Solve

Ak
x

k = bk (6)

with a preconditioned MINRES method with relative
residual tolerance

ηk := max

{
min

{
1

(k + 1)σ
, ‖bk‖

}
, ε

}
, (7)

where Ak,xk and bk are defined in the Appendix.
5: Choose αk as the largest value in [0, 1] such that

conditions (6.5) and (6.6) in [11] are satisfied.
6: (θk+1, νk+1, φk+1, sk+1) := (θk , νk, φk, sk) +

αk(∆θk , ∆νk, ∆φk , ∆sk).
7: Compute µk+1 := (φk+1)T sk+1

ni
and ek+1

tol := ‖bk+1‖
8: Increment k by 1
9: end while

compared to using an exact method [7]. Note that the final
output of an inexact IPM is within the same tolerance of
the solution to (4) as the output of an exact IPM. The only
difference is in the early iterations of the IPM — in later
iterations the x

k from the inexact IPM converges to the x
k

of the exact IPM.

IV. PRECONDITIONED ITERATIVE METHODS
There are two major factors in the computational cost

of the IIPM in Algorithm 1, which are: calculation of the
matrix H̃k and computing the solution of (6). In this section
we introduce some new techniques to reduce the cost of these
two factors in the IIPM. The computational complexity of
each method is measured in terms of floating-point opera-
tions (flops). A flop is defined as one addition, subtraction,
multiplication or division of two floating-point numbers [13].
For simplicity of presentation, only higher order terms that
contribute the most towards the computational cost of an
algorithm are presented in this section. However, all terms,
including the lower order ones, are taken into account in the
numerical results presented in Section V.

The cost of each iteration of the MINRES method is
(6n2 + 8nm + 2m2)N , which is mainly due to a matrix-
vector multiplication. If it runs for iteration count equal to
the dimension of the system matrix Ak, then the total cost
of one iteration of solving (6) in an exact IPM is given by
(12n3 + 22n2m + 12nm2 + 2m3)N2, which is quadratic in
the horizon length N . Numerical experiments also indicate
that the computational cost of the MINRES method in



solving (6) is much higher than direct methods. However, the
rate of convergence of the MINRES method can be enhanced
by using a suitable preconditioner [12]. A preconditioner
is a matrix M that approximates the matrix Ak and its
factorization is inexpensive. In the next two subsections, we
investigate two preconditioners and discuss their properties.

A. Preconditioner 1
In [14], the following preconditioner is proposed for a

general class of saddle point problems:

M :=

[
H̃k + F T K−1F 0

0 K

]
, (8)

where K ∈ R
ne×ne is a symmetric and positive definite

weight matrix.
Theorem 1: [14] Suppose H̃k is symmetric positive

semidefinite with nullity r. Then ζ = 1 is an eigenvalue
of M−1Ak of algebraic multiplicity nθ and ζ = −1
is an eigenvalue of multiplicity r. The remaining ne − r
eigenvalues of M−1Ak are strictly between −1 and 0 and
satisfy the relation ζ = − α

α+1 , where α are the ne−r positive
generalized eigenvalues of αH̃kv = F T K−1Fv.

A convenient choice for the weight matrix is K−1 = γI ,
where γ > 0 is a controlling parameter. It follows from
Theorem 1 that ne −r eigenvalues of M−1Ak are not equal
to ±1 and are given by ζ = − αγ

αγ+1 , where α are the
generalized eigenvalues of

αH̃v = F T Fv. (9)

Note that if γ → ∞, then ζ → −1. So by choosing a larger
value of γ a further clustering of eigenvalues around −1 can
be obtained, which reduces the number of iterations of the
MINRES method significantly.

Let αmin be the minimum generalized eigenvalue of (9)
and ζ̄ be the corresponding eigenvalue of M−1Ak. By
Theorem 1, ne − r eigenvalues lie between −1 and ζ̄.
Since we have imposed an upper bound on ζ by choosing
the controlling parameter γ, we can put an upper bound
on the number of iterations of the MINRES method for a
given relative residual error. Following the procedure of [12,
Eq. 3.13 to Eq. 3.14], we deduce that an upper bound on
the iterations of the MINRES method required for a given
relative residual tolerance ηk is

ck
1 =

2 log
(
ηk/2

)

log

(
1−

√
|ζ̄|

1+
√

|ζ̄|

) . (10)

The above result shows that the number of iterations of
the MINRES method with preconditioner M depends upon
the tolerance ηk and ζ̄ , but is independent of the dimension
of the matrix Ak. Notice that when ζ̄ → 0, then (10) implies
that ck

1 → ∞. However, this is not true, because there is an
upper limit on the number of the MINRES method iterations
in exact arithmetic. The next theorem gives us that upper
bound on the number of iterations of the MINRES method
with preconditioner M.

Theorem 2: Suppose ζ = 1 is an eigenvalue of M−1Ak

of algebraic multiplicity nθ and ζ = −1 is an eigenvalue of
multiplicity r, then the MINRES method will take at most
ne − r + 2 iterations to converge in exact arithmetic.

Proof: From [12, Eq. 3.7], the upper bound on the
residual of (6) at the j-th iteration of the MINRES method
can be written as

‖rj‖/‖r0‖ ≤ min
pj

max
i=1,...,nθ+ne

|pj(λi)| , (11)

where r0 = bk is the initial residual, rj = bk −Ak
x

j is the
j-th residual, pj(λi) is the polynomial of degree j, and λi

is the i-th eigenvalue of M−1Ak. Let

pj(λi) = 1 + a1λi + · · · + ajλi
j , (12)

where a1, . . . , aj are the unknown coefficients. Substitut-
ing (12) in (11), we get

‖rj‖/‖r0‖ ≤ min
a1,...,aj

max{|1 + a1 + · · · + aj | ,
∣∣1 − a1 + · · · + ak(−1)j

∣∣ ,∣∣∣1 + a1λ1 + · · · + ajλ
j
1

∣∣∣ , . . . ,
∣∣∣1 + a1λne−r + · · · + ajλ

j
ne−r

∣∣∣}. (13)

When j = ne − r + 2, the upper bound of (13) is zero,
because a1, . . . , ak can be uniquely determined by equating
each polynomial in (13) to zero.
Computational cost of factorization of M: To compute the
preconditioner, we need to compute the matrix Y = H̃ +
γF T F . The matrix product F T F can be computed outside
the main loop of Algorithm 1. The matrix Y > 0 has a
block tridiagonal form. The block Cholesky factorization of
Y = LLT is determined , where L has a lower bidiagonal
structure [15]. The computational cost of computing L is
( 7
3n3 + 3n2m + 3nm2 + 1

3m3)N flops.

B. Preconditioner 2
It is observed from simulations that the condition number

of the matrix Ak increases as the number of iterations of the
IIPM increases. In this section, we discuss the mechanisms
of ill-conditioning, the computational cost of calculating the
matrix H̃k, and how it can be reduced, and then present a
low cost preconditioner.

As the iteration number k of Algorithm 1 increases, some
values of the diagonal matrix W k become very large while
others become very small. As a result, the condition number
of H̃k becomes large. We can exploit this fact to reduce the
computational cost of calculating H̃k. Since W k is diagonal,
GT W kG can be written as a weighted sum of outer products
of columns of G:

GT W kG =

ni∑

i=1

wk
i gig

T
i , (14)

where gi represents the i-th column of G, and wk
i :=

φk
i

sk
i

Note that if sk
i → 0 as k → ∞, then (5c) indicates that

the i-th inequality constraint is active. Let us define N :=



{1, 2, . . . , ni} and NA := {i ∈ N | limk→∞ sk
i = 0}. The

set NA contains the indices of active inequality constraints
at the solution. Note that if sk

i 9 0 as k → ∞ then φk
i → 0,

because µk = (φk)T sk

ni
→ 0 as k → ∞. Let

NI := {i ∈ N | lim
k→∞

wk
i = 0} = N \NA,

which contains the indices of inactive inequality constraints
at the solution. We define a δ-inactive set N k

I (δ) depending
upon the parameter δ > 0 as N k

I (δ) := {i ∈ N | 0 < wk
i <

δ}, and a δ-active set as N k
A(δ) := N \ N k

I (δ). From (14),
we have

GT W kG =
∑

i∈Nk
A

(δ)

wk
i gig

T
i +

∑

i∈Nk
I

(δ)

wk
i gig

T
i . (15)

In practice, for larger values of k and small δ, there is a
small number of active constraints, i.e. card(N k

A(δ)) � ni.
Similarly, for larger values of k and small δ, we
have wk

i ≈ 0 ∀ i ∈ N k
I (δ). Therefore, H̃k can be

approximated as

H̃k ≈ H +
∑

i∈Nk
A

(δ)

wk
i gig

T
i =: Ĥk. (16)

The computational cost of calculating H̃k is equal to
(n2 + 2nm + m2)ni. However, the computational cost of
calculating the approximation of H̃k as given in (16) is
(n2 +2nm+m2)ck

3 , where ck
3 = card(N k

A(δ)), and ck
3 � ni

for larger values of k. This means that we can reduce
the computational cost in calculating the matrix H̃k, if
we approximate it by (16), by a factor of ni/ck

3 in each
iteration k of Algorithm 1. From now on, we will replace
H̃k in all computations with its approximation Ĥk and
the definitions of Ak and M are changed accordingly and
denoted Âk and M̂, respectively.

We will now exploit the observation that, for larger values
of k, the last matrix in (16) is of low rank relative to its size.
Hence, consider the new preconditioner

P :=

[
H + γF T F 0

0 1
γ
I

]
. (17)

Since P is composed of matrices H and F , which are
independent of any varying parameter in the main loop of
Algorithm 1, its Cholesky factorization can be done outside
the loop, hence does not add to the computational cost inside
the loop of the IIPM. The next two theorems, which are quite
general for a low rank update, are used to get a limit on the
number of MINRES iterations with preconditioner P .

Theorem 3: Let B = I + ∆B be a symmetric matrix
of size nB × nB with rank(∆B) = r∆B

< nB, then
the MINRES method, when solving a linear system with
coefficient matrix B, terminates in at most r∆B

+1 iterations.
Proof: Since B = I + ∆B with rank(∆B) = r∆B

,
therefore B will have an eigenvalue at 1 of algebraic mul-
tiplicity nB − r∆B

. Following the procedure of Theorem 2,
it can easily be shown that the MINRES method terminates
in at most r∆B

+ 1 iterations.

Theorem 4: Let Ã = A + ∆ where Ã is a symmetric
(symmetric and positive definite) matrix of size nA×nA with
A > 0 and rank(∆) = r∆ < nA. The MINRES (conjugate
gradient (CG)) method with preconditioner A, when solving
a linear system with coefficient matrix Ã, will terminate in
at most r∆ + 1 iterations.

Proof: Consider the following system of linear equa-
tions:

(A + ∆)x̄ = b̄. (18)

Let A = LL
T be the Cholesky factorization of A. Since A

is taken as preconditioner, we effectively want to solve the
following system without preconditioner

(
I + ∆̃

)
x̃ = b̃, x̄ = (L−1)T x̃ (19)

where ∆̃ := L
−1∆(L−1)T , b̃ := L

−1b̄, then

rank(∆̃) ≤ min
(
rank(L−1), rank(∆)

)
= r∆.

Following Theorem 3 for the MINRES method ( [15,
Thm 10.2.5] for the CG method), we get that the linear
system (19) can be solved with the MINRES (CG) method in
at most r∆+1 iterations. This means that the MINRES (CG)
method with preconditioner A terminates in at most r∆ + 1
iterations for the perturbed system (18).

The problem of finding the solution of the perturbed sys-
tem (18), using the fact that the factorization of A is available
in advance, is known as the low rank update problem. The
computational cost of solving linear system (18) can be
significantly reduced by using low rank update methods if the
rank of the perturbed matrix ∆ is sufficiently small. In the
literature, there are two methods that are usually used for low
rank update problems [15]. These are the Sherman-Morrison-
Woodbury (SMW) formula and update of Cholesky factoriza-
tion. For dense matrices, the computational complexity of our
proposed method (Theorem 4), SMW formula, and Cholesky
update is O(r∆n2

A
). For sparse matrices, the density of the

non-zero elements in the coefficient matrix increases after
the update of Cholesky factorization, which requires more
memory. However, in our proposed method, we only need to
store the resultant vector of the matrix-vector product, hence
requires less memory and is therefore a better option for
sparse matrices. For banded matrices, as in Algorithm 1, the
computational complexity of our proposed method, the SMW
formula, and Cholesky update is O(bwr∆nA), where bw is
the bandwidth of Ã. However, as discussed in Section I, our
iterative method is more attractive from a hardware point of
view.

The following corollary can easily be deduced from The-
orem 4.

Corollary 1: Suppose that Ĥk = H + ∆H , where

∆H :=
∑

i∈Nk
A

(δ)

wigig
T
i and rank(∆H) = card(N k

A(δ)) = ck
3

then a preconditioned MINRES method with precondi-
tioner P terminates in at most ck

3 +1 iterations, when solving
a linear system with coefficient matrix M̂.



Theorem 5: A preconditioned MINRES method with pre-
conditioner P terminates in at most ck

1 + ck
3 + 1 iterations,

when solving a linear system with coefficient matrix Âk.
Proof: We effectively want to solve the following linear

system

P−1Âk
x

k = P−1bk or P−1M̂M̂−1Âk
x

k = P−1bk

or following two linear systems:

P−1M̂y = P−1bk, (20a)
M̂−1Âk

x
k = M̂−1M̂y. (20b)

Following Corollary 1, the linear system (20a) can be solved
for y in at most ck

3 + 1 MINRES iterations. Similarly
following (10), the linear system (20b) can be solved for x

k

in at most ck
1 MINRES iterations.

C. Implementation Scheme
We propose two preconditioned MINRES methods, which

we call P-MINRES-1 and P-MINRES-2.
The computational cost of an IPM per iteration with P-

MINRES-1, which uses only preconditioner M̂ is given in
the Table I. In the third factor, the constant ck

1 is the number
of iterations required by the MINRES algorithm for a given
tolerance ηk < ε, as given in (10). The computational cost
of this method depends significantly upon ck

1 , but we can
make it small enough by choosing a suitable controlling
parameter γ.

In P-MINRES-2 both preconditioners M̂ and P are used.
In initial iterations of the inner loop of Algorithm 1, the
preconditioner P is used. It is observed from numerical
experiments that in later iterations of the main loop, some-
times the MINRES method takes a large number of iterations
before it convergences to the desired accuracy and even
higher than its limit as defined in Theorem 5. This is due to
the finite precision effects of floating point arithmatic, which
becomes important in the case when the condition number
of Âk is high. In that case, we switch to the preconditioner
M̂ when the following condition holds:

ck−1
4 >

7
3n3 + 3n2m + 3nm2 + 1

3m3

12n2 + 18nm + 6m2
or ‖bk‖ > β‖bk−1‖

where 0 < β < 1. The cost of an IPM per iteration in this
method is given in Table I, where ck

2 = 1 if preconditioner M̂
is used, and 0 if P is used, and ck

4 denotes the number
of MINRES iterations, which is bounded by ck

1 + ck
3 + 1

(Theorem 5).

V. NUMERICAL RESULTS
Consider a system of q = n

2 ≥ 4 equal masses connected
by springs and to walls at ends. The mass of each block
is 1 kg and the spring constant of each spring is taken
as 1 N/m. There is no damping. There are 4 actuators con-
nected to the first 4 masses and each can exert a maximum
force of ±0.5. The displacements of the masses are restricted
to ±4. This continuous-time state-space system is trans-
formed into a discrete-time system using a sample time of 0.5
sec. The objective is to regulate the displacements with the

TABLE I
COST OF AN IPM PER ITERATION

Method Flops
Riccati (3n3 + 6n2m + 3nm2 + 1

3
m3)N+

Recursion [5] l(n2 + 2nm + m2)(N + 1)

P-MINRES-1 ( 7

3
n3 + 3n2m + 3nm2 + 1

3
m3)N+

l(n2 + 2nm + m2)(N + 1)+

(12n2 + 18nm + 6m2)Nck

1

P-MINRES-2 ( 7

3
n3 + 3n2m + 3nm2 + 1

3
m3)Nck

2
+ (n2+

2nm + m2)ck

3
+ (12n2 + 18nm + 6m2)Nck

4

given constraints on displacements and control inputs. The
regulator tuning matrices are taken as R = I, M = 0, and
Q = [Ip 0]T [Ip 0], where p = n/2 and the states have been
ordered such that first p states describe the displacements.
The matrix P satisfies the discrete-time algebraic Riccati
equation. A number of simulations is carried out with initial
conditions x = 3.5[1 1 0 · · · 0]T , θ0 = 1nθ

, ν0 = 1ne
, φ0 =

s0 = 1ni
, ε = 10−3, δ = 0.5, γ = 107, σ = 4, β = 0.87.

Fig. 1(a) indicates that the rate of convergence of P-
MINRES-1 and P-MINRES-2 is much higher than the un-
preconditioned MINRES method. It is also observed in some
cases that the unpreconditioned MINRES fails to converge
and the solution never reaches the desired accuracy, due to
the high condition number of matrix Âk. This shows that
an iterative method without a preconditioner is not a good
option for IIPMs. Fig. 1(b) indicates that the number of δ-
active inequality constraints decreases as the iteration k of
Algorithm 1 increases.

To see the growth of computational cost with the number
of states n, simulations are carried out with fixed inputs m
and horizon length N . Fig. 1(c) shows that the cost of P-
MINRES-2 is less than the Riccati recursion method by
roughly 25% to 50%. The plots of n2/250 and n3/3500
are also plotted for comparison. Note that P-MINRES-2
roughly scales with O(n2). Secondly, keeping n and m fixed,
simulations are carried out for varying N and results are
plotted in Fig. 1(d). Let ci :=

∑k=kmax

k=1 ck
i /kmax denote the

average of ci, ∀ i = 1, 2, 3, 4, where kmax is the maximum
number of iterations taken by Algorithm 1 to terminate with
the desired accuracy ε. Fig. 2(a) and Fig. 2(b) indicate that
the average number of MINRES iterations in P-MINRES-1
(c1) is roughly fixed, and the growth of the average number
of MINRES iterations in P-MINRES-2 (c4) with n is also
not significant. Fig. 2(c) and Fig. 2(d) show that c3 scales
linearly with n and N .

VI. CONCLUSIONS

To reduce the computational cost in predictive control, so
that it can be applied to fast systems, an efficient method to
solve the resulting finite horizon optimal control problem
(FHOCP) is presented. An inexact interior point method
with an iterative linear solver (MINRES) is proposed. The
use of inexact and iterative methods is motivated by the
fact that these methods are attractive from a hardware point
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Fig. 1. (a) Comparison of MINRES, P-MINRES-1 and P-MINRES-2.
(b) Decay of number of δ-active inequality constraints with main loop
iteration k. The simulation results for (a) and (b) are computed with
n = 30, m = 4 and N = 5. (c) Growth of number of flops with number of
states n, where m = 4 and N = 5. (d) Growth of number of flops with N ,
where n = 40 and m = 4.
of view [9]. The convergence of the MINRES method is
enhanced with the development of efficient preconditioners.

In Section IV, we have proved a result based on the
MINRES (conjugate gradient) method for the solution of
a perturbed linear system with a symmetric (symmetric
and positive definite) coefficient matrix. This result is quite
general in the sense that it can be used for any low rank
update of a linear system. This is a good alternative to its
competitors the Sherman-Morrison-Woodbury formula and
the update of Cholesky factorization, particularly for sparse
matrices.

The computational cost involved in factorization of the
preconditioner M̂, which is used in P-MINRES-1 and in
latter iterations of P-MINRES-2 is quite high. Further inves-
tigations can be made to improve it.

APPENDIX

H :=

[
IN ⊗ Q̃ 0

0 P

]
where Q̃ :=

[
Q M

MT R

]

F :=

[
−In 0

0 IN ⊗ [0 − In]

]
+

[
0 0

IN ⊗ [A B] 0

]

If Ji = J, Ei = E ∀ i ⇒ G :=

[
IN ⊗ [J E] 0

0 JN

]

If di = d̄ ∀ i ⇒ d := IN ⊗ d̄, f :=
[
−xT 0

]T

Ak :=

[
H̃k F T

F 0

]
,xk :=

[
∆θk

∆νk

]
, bk :=

[
rk
B

rk
F

]

rk
B := rk

H − GT (Sk)−1
(
Φkrk

G + rk
S

)

∆φk := (Sk)−1
(
Φkrk

G + rk
S + ΦkG∆xk

)

∆sk := (Φk)−1
(
rk
S − Sk∆φk

)
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Fig. 2. (a) Growth of c1, c4 and c2 with number of states n, where horizon
length N = 5, and inputs m = 4. (b) Growth of c1, c4 and c2 with N ,
where n = 40 and m = 4. (c) Growth of average number of δ-active
inequality constraints c3 with n, where N = 5 and m = 4. (d) Growth
of c3 with N , where n = 40 and m = 4. For comparison the total number
of inequality constraints ni = l(N + 1) is also shown in (c) and (d).

rk
H := −

(
Hθk + F T νk + GT φk

)
, rk

S := −ΦkSk
1ni

rk
F := −

(
Fθk − f

)
, rk

G := Gθk − d + sk
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