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Abstract— Interior point methods (IPMs) have proven to be
an efficient way of solving quadratic programming problems
in predictive control. A linear system of equations needs to be
solved in each iteration of an IPM. The ill-conditioning of this
linear system in the later iterations of the IPM prevents the
use of an iterative method in solving the linear system due to
a very slow rate of convergence; in some cases the solution
never reaches the desired accuracy. In this paper we propose
the use of a well-conditioned, approximate linear system, which
increases the rate of convergence of the iterative method. The
computational advantage is obtained by the use of an inexact
Newton method along with the use of novel preconditioners.
Numerical results indicate that the computational complexity
of our proposed method scales quadratically with the number
of states and linearly with the horizon length.

I. INTRODUCTION

This paper addresses the computational issues involved
in solving a finite horizon optimal control problem for a
discrete-time linear system with quadratic cost and linear
inequality constraints on the states and control inputs. In
predictive control, at each sampling instant with the given
state information, a suitably-defined quadratic program (QP)
is solved to obtain a sequence of inputs and only the first
input is applied to the plant. This process is repeated at every
sample instant using the current state estimate.

There are essentially two popular ways to solve the
finite horizon optimal control problem, namely explicit and
implicit. In the explicit approach states are eliminated from
the objective function and constraints [1], which results in
a small, but dense Hessian in the QP. The computational
complexity of this approach in each iteration of an IPM is
O((l + m)m2N3), where l is the number of constrained
variables, m is the number of inputs, and N is the horizon
length. In the implicit approach states are considered as
unknowns and state equations are treated as equality con-
straints, which results in a large, but sparse Hessian. In the
implicit approach, it is shown in [2] that the computational
complexity in each iteration of an IPM can be reduced to
O((n + m)3 + l(m + n)2)N), where n is the number of
states, using a Riccati recursion scheme.

In recent years, attempts have been made to use predictive
control in fast processes with a short sampling time. To
reduce the computational load in solving the finite horizon
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optimal control problem, new techniques have emerged [3]–
[5]. In [3] a large number of QPs are solved off-line for all
possible initial states of the plant, then an explicit function
is formed using the solutions of the QPs. This approach is
generally applicable to small-scale problems. In a second
approach, as described in [4], a QP problem is solved online.
To reduce the number of computations, warm-starting and
early termination of the QP problem is proposed. In warm-
starting, the initialization of the QP problem is done using
the predictions made in the previous step. This reduces the
computational cost only if the new QP is similar to the
previous one. The early termination significantly reduces the
computations, but on the other hand it may lead to state
equation violations. In [5], an iterative scheme based on
fast gradient methods, is used to obtain the solution of an
optimization problem arising in predictive control with input
constraints only. This scheme allows one to compute an a
priori upper bound on the number of iterations for a given
accuracy.

The linear system of equations to be solved at each
iteration of an IPM becomes ill-conditioned as the solution
is approached. The linear system is either solved by direct
or iterative methods. Iterative methods are often preferred,
because their hardware implementation is efficient and a
trade-off between speed and accuracy can be achieved [6]. To
improve the ill-conditioning of the linear system, we propose
an approximation of the ill-conditioned linear system where
the resulting approximate linear system is well-conditioned.
An upper bound on the introduced error, which gets reduced
as IPM iterations are increased, is determined analytically.
The minimal residual method (MINRES) is used here to
solve the approximate well-conditioned system. It is shown
that the approximate well-conditioned system can be solved
much faster with fewer iterations than with the original ill-
conditioned system. The rate of convergence of the approxi-
mate system is further enhanced with the development of two
new preconditioners. The preconditioned system used here
has a lower computational cost compared to the one used
in [7]. Results obtained from numerical simulations indicate
that the computational complexity of our proposed method
scales quadratically with the number of states and linearly
with the horizon length.

Notation: For a matrix, A > 0 (≥ 0) means that A is
positive (semi-positive) definite and for a vector, x < 0 (≤ 0)
means that each element of x is negative (non-positive).
The infinity norm of a matrix A ∈ R

m×n is defined as
‖A‖∞ := max1≤i≤m

∑n
j=1 |aij |. A(1 : r, 1 : r) denotes the

submatrix of A containing the first r rows and r columns.
For a set X , card(X) denotes the number of elements in X .



The symbol ⊗ represents the Kronecker product.

II. PROBLEM DESCRIPTION

Consider a discrete-time linear time-invariant dynamic
system of the form

xi+1 = Axi + Bui, (1)

where xi ∈ R
n is the state vector and ui ∈ R

m is the input
vector at the i-th time instant. Let x = x0 ∈ R

n be the mea-
surement or estimate of the state at the current time instant.
The objective is to find, over a finite horizon of length N , a
sequence of optimal control inputs u0, . . . , uN−1 subject to
equality constraints (1) and the inequality constraints

Jixi + Eiui ≤ di, i = 0, . . . , N − 1, (2a)

JNxN ≤ dN , (2b)

while minimizing the quadratic objective

xN
T PxN +

N−1∑
i=0

(
xi

T Qxi + uT
i Rui + 2xT

i Mui

)
(3)

with R > 0, Q − MR−1MT ≥ 0 and P ≥ 0, Ji, JN ∈
R

l×n, Ei ∈ R
l×m, Q, P ∈ R

n×n, R ∈ R
m×m, M ∈ R

n×m.
To solve the above problem the vector of decision variables

is defined as

θ :=
[

xT
0 uT

0 xT
1 uT

1 · · · uT
N−1 xT

N

]T
. (4)

The above problem can be converted to a QP problem,
which can be written in the form

min
θ

1
2
θT Hθ subject to Fθ = f(x), Gθ ≤ d, (5)

where θ ∈ R
nd , H ∈ R

nd×nd , F ∈ R
ne×nd , G ∈ R

ni×nd

with nd := (n+m)N+n, ne := n(N+1) and ni := l(N+1)
is the number of inequality constraints. The matrices H, F, G
and the vectors f, d are defined in the Appendix. To simplify
notation in subsequent sections the (x) is omitted from vector
f(x).

To solve the QP problem two approaches are used,
namely active set methods [8] and interior point methods
(IPMs) [2], [9]. We focus on IPMs because they have poly-
nomial computational complexity while active set methods
have exponential complexity in the worst case [9].

III. INTERIOR POINT METHODS

In this section we review the ideas in interior point
methods [9]. The Karush-Kuhn-Tucker (KKT) conditions
of (5) are

Hθ + FT ν + GT φ = 0, (6a)

Fθ − f = 0, (6b)

Gθ − d + s = 0, (6c)

ΦS1ni = 0, φ, s ≥ 0, (6d)

where ν ∈ R
ne and φ ∈ R

ni are called dual variables, s ∈
R

ni is a vector of slack variables, 1ni ∈ R
ni is a vector

of ones and Φ, S are diagonal matrices defined by Φ :=

diag(φ), S := diag(s). This also indicates that we have ne

equality constraints and ni inequality constraints.
In an IPM the optimal solution is obtained by solving the

nonlinear optimality conditions (6). The classical algorithm
to solve such equations is Newton’s method. This is an
iterative method in which at each iteration k, the solution
of a linear system of the following form is required to find
the search direction Δxk:⎡

⎣ H FT GT

F 0 0
G 0 −W k

⎤
⎦

︸ ︷︷ ︸
Ak

⎡
⎣ Δθk

Δνk

Δφk

⎤
⎦

︸ ︷︷ ︸
Δxk

=

⎡
⎣ rk

H

rk
F

rk
L

⎤
⎦

︸ ︷︷ ︸
bk

, (7)

where Ak and bk are defined in Appendix I.
An IPM in which an initial guess of θ satisfies the equality

and inequality constraints defined in (5) and φ, s > 0 is
called a feasible IPM. An IPM for which an initial guess
of θ satisfies only φ, s > 0 is called an infeasible IPM. An
IPM that uses an inexact method to solve the linear system
of equations (7) is called an inexact interior point method.
An infeasible and inexact IPM is described in Algorithm 1
for a QP problem. This is an extension of the infeasible-
path-following IPM (Algorithm IPF) of [9, p. 110], which
was designed for a linear programming problem. In path
following methods, we follow a parametrized path to the
solution of (6), where Newton’s method is used to target a
succession of points along the path.

Algorithm 1 Inexact Interior Point Method (IIPM)

Input:
• H, F, G, f, d
• Initial guess θ0, ν0, φ0 > 0, s0 > 0, ζ ≥ 1, σ ∈ (0, 1)
• Tolerance ε > 0

Output: Optimal θ.

Algorithm:

1: Set k = 0 and compute μ0 := (φ0)T s0

ni
, e0

tol := ‖b0‖∞.

2: while μk > ε and ek
tol > ε do

3: Solve (7) or (13) for Δxk or its approximation with
an iterative method with relative residual tolerance

ηk := max
{

min
{

1
(k + 1)ζ

, ‖bk‖∞
}

, ε

}
. (8)

4: Choose αk as the largest value in [0, 1] such that
conditions (6.5) and (6.6) in [9] are satisfied.

5: (xk+1, sk+1) := (xk, sk) + αk(Δxk, Δsk).
6: Compute μk+1 := (φk+1)T sk+1

ni
, ek+1

tol := ‖bk+1‖∞.
7: Increment k by 1.
8: end while

In the IIPM the linear system (7) is solved with less
accuracy in the initial iterations, as depicted by the decreas-
ing function ηk. Therefore, direct methods, which solve the
linear system exactly, are not applicable here. We focus
on an inexact IPM, because the total number of floating-
point operations needed to find the solution to (5) can be



reduced significantly by using an inexact method to solve (7),
compared to using an exact method [10]. Note that the final
output of an inexact IPM is within the same tolerance of the
solution to (5) as the output of an exact IPM. The only part
where approximate solutions are obtained are in the early
iterations.

IV. PRECONDITIONED ITERATIVE METHODS

The system matrix Ak appearing in (7) is symmetric, but
indefinite, hence the minimum residual (MINRES) iterative
method [11] can be used to compute the solution for Δx k.
The solution of (7), where most of the computations are
done, is a key part of Algorithm 1. It is well-known that
the condition number of the matrix Ak increases as k
increases and iterative methods do not perform well with
ill-conditioned systems. Therefore, in the predictive control
literature, the main focus in solving such linear systems is on
direct methods. In this paper we propose an approximation
of (7) such that the resulting approximate linear system
becomes well-conditioned. It is shown in the next section
that this modified linear system can be solved with fewer
MINRES iterations. The rate of convergence of the modified
system is further enhanced with the development of two new
preconditioners.

A. Approximation of the linear system (7)

In this section, we discuss the mechanisms of ill-
conditioning, and present an approximation of (7) with a
better-conditioned matrix. Note that if sk

i → 0 as k → ∞,
then (6c) indicates that the i-th inequality constraint is active.
Let N := {1, 2, . . . , ni} and define a δ-active set N k

A(δ),
depending upon the parameter δ > 0, as

N k
A(δ) := {i ∈ N | 0 < wk

i < δ} (9)

where wk
i := sk

i

φk
i

and a δ-inactive set as

N k
I (δ) := N \ N k

A(δ). (10)

We propose that a sufficiently large value of δ is chosen such
that all inequality constraints become δ-active for k = 0.
Suppose nk

a := card(N k
A(δ)). In practice, for larger val-

ues of k and small δ, there is a small number of active
constraints, i.e. nk

a 	 ni. As the iteration number k
of Algorithm 1 increases, the values corresponding to the
δ−inactive constraints of the diagonal matrix W k become
very large. Note that if sk

i � 0 as k → ∞ then φk
i → 0,

because μk = (φk)T sk

ni
→ 0 as k → ∞. Therefore wk

i → ∞
as k → ∞ for the constraints that are inactive at the solution.
As a result, the condition number of Ak becomes very large.

Let us permute the matrix Ak according to the δ−active
and δ−inactive constraints as⎡
⎢⎢⎣

H FT (Gk
1)T (Gk

2)T

FT 0 0 0
Gk

1 0 −W k
1 0

Gk
2 0 0 −W k

2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Δθk

Δνk

Δφk
1

Δφk
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rk
H

rk
F

rk
L1

rk
L2

⎤
⎥⎥⎦ ,

(11)

where

[
Gk

1

Gk
2

]
= UkG,

[
Δφk

1

Δφk
2

]
= UkΔφk,

[
rk
L1

rk
L2

]
=

Ukrk
L, Uk ∈ R

ni×ni is a permutation matrix, W k
1 ∈

R
nk

a×nk
a , W k

2 ∈ R
(ni−nk

a)×(ni−nk
a), ‖W k

1 ‖∞ < δ and
‖(W k

2 )−1‖∞ ≤ δ−1. For simplicity, we write (11) as[
Ak

1 (Ak
2)T

Ak
2 −W k

2

] [
Δzk

1

Δzk
2

]
=

[
bk
1

bk
2

]
, (12)

where Ak
1 , Ak

2 represent the corresponding block matrices,
and Δzk

1 , Δzk
2 , bk

1 , b
k
2 are the corresponding vectors in (11).

We propose that rather than solving (7) or (12), which
becomes ill-conditioned at the later iterations of the IPM,
we can find an approximate solution of (12) by solving

Ak
1Δẑ1 = bk

1 , (13a)

Δẑ2 = (W k
2 )−1(Ak

2Δẑ1 − bk
2). (13b)

We claim that (13a) is better conditioned compared to (12).
This increases the rate of convergence of the iterative method
and also enables the use of low precision floating point
arithmetic. To justify our claim we first recall Gershgorin’s
theorem and the interlacing property of symmetric matrices.

Theorem 1: [12, §8.1.2] (Gershgorin) Suppose A ∈
R

p×p is a symmetric matrix, then

λ(A) ⊆
p⋃

i=1

[aii − ri, aii + ri]

where aii is the ii-th element of A and ri =
∑p

j=1,j �=i |aij |.
Theorem 2: [12, §8.1.2] (Interlacing Property) Suppose

A ∈ R
n×n is a symmetric matrix with λp(A) ≤

λp−1(A) · · · ≤ λ2(A) ≤ λ1(A) and Ar := A(1 : r, 1 : r),
then

λr+1(Ar+1) ≤ λr(Ar) ≤ λr(Ar+1) ≤ · · ·
≤ λ2(Ar+1) ≤ λ1(Ar) ≤ λ1(Ar+1)

for r = 1, 2, . . . , p − 1.
Proposition 1: Let ρ(Ak

1) be the spectral radius of Ak
1 ,

then
ρ(Ak

1) ≤ max {hii + r1, δ + ‖G‖∞}
where r1 := ‖H‖∞ + ‖F‖∞ + ‖G‖∞ and hii is the ii-th
element of H .

Proof: Follows from Gershgorin’s theorem.
Proposition 2: Let λi(Ak

1) be an eigenvalue of Ak
1 , then

λi+1(Ak
nk

c +1) ≤ λi(Ak
1) ≤ λi(Ak

nk
c +1).

where nk
c := nd + ne + nk

a.
Proof: Follows from the interlacing property.

It is observed from numerical experiments that ill-
conditioning of Ak for large k arises mainly due to the
maximum eigenvalue of Ak. Proposition 1 shows that the
maximum eigenvalue of Ak

1 is bounded and its upper limit
depends upon the infinity norm of H, F, G and δ. However,
it does not depend on the number of IPM iterations k.
Proposition 2 indicates that the minimum eigenvalue of Ak

1 is
bounded below by the minimum eigenvalue of A k. This does
not give any bound on the absolute minimum eigenvalue of



Ak
1 , but shows that the spectrum of eigenvalues of Ak

1 lies
within the spectrum of eigenvalues of Ak. Tighter clustering
of eigenvalues results in fewer iterations of the MINRES
method, because the number of iterations depends upon the
distribution of eigenvalues [13, pp. 119-120]. Propositions 1
and 2 together justify why (13a) is better conditioned com-
pared to (12), and numerical results in Section VI confirm
this.

The approximation of (12) by (13) reduces the computa-
tional cost. However, it introduces an error in the solution
of (12). The upper bound in the solution error is estimated
in the following result:

Proposition 3: Let ek := Δẑk
1 − Δzk

1 be the error in the
solution of the first part of (12), then

‖ek‖∞ ≤ δ−1
(
c2
2‖bk

1‖∞ + c2‖bk
2‖∞

)
+ O(δ−2),

where c2 := κ∞(Ak
1 )‖G‖∞
c3

, c3 :=
∥∥∥∥ H FT

F 0

∥∥∥∥
∞

, and

κ∞(Ak
1) is the condition number of Ak

1 .
Proof: See Appendix II.

Note that ‖bk‖∞ < ε at the termination of Algorithm 1. So
by choosing appropriate values of ε, δ, and k, it is possible
to make ek arbitrarily small. This indicates that at the final
stages of the IPM the error ek would converge to zero.

To reduce the number of unknowns in (13), we prefer to
solve(

Uk
1 V (Uk

1 )T + W k
1

)
Δφ̂k

1 = Uk
1 ḠH̄−1rk

H̄ − rk
L1

, (14)

where V := ḠH̄−1(Ḡ)T , H̄ :=
[

H FT

F 0

]
, Uk :=[

Uk
1

Uk
2

]
, Ḡ := [G 0] and Uk

1 ∈ R
nk

a×ni . The remaining

part of the solution of (13) is calculated as[
Δθ̂k

Δν̂k

]
=

[
H FT

FT 0

]−1 [
rk
H − (Gk

1)T Δφ̂k
1

rk
F

]
.

(15)
From (13b),

Δφ̂k
2 = (W k

2 )−1(Gk
2Δθ̂k − rk

L2
). (16)

B. Preconditioners

A preconditioner is a matrix that approximates the co-
efficient matrix of a linear system and its factorization is
inexpensive [13, p. 119]. In the next two subsections, we
propose two preconditioners to solve the linear system (14)
and discuss their properties.

1) A Diagonal Preconditioner: Consider the following
diagonal preconditioner

Pk
1 := W k

1 . (17)

Lemma 1: The rank of V ∈ R
ni×ni is less than or equal

to min{nd, ni}.
Proof: Let

H̄−1 :=
[

H1 HT
2

H2 H3

]
,

where H1 ∈ R
nd×nd , H2 ∈ R

ne×nd and H3 ∈ R
ne×ne .

Since

V =
[

G 0
] [

H1 HT
2

H2 H3

] [
GT

0

]
= GH1G

T

and rank(GH1G
T ) ≤ min(rank(G), rank(H1)); it follows

that rank(V ) ≤ min{nd, ni}.
Theorem 3: [7] Let Ã = A+Δ where Ã is a symmetric

matrix of size p × p with A > 0 and rank(Δ) = r < p.
The MINRES method with preconditioner A, when solving
a linear system with coefficient matrix Ã, will terminate in
at most r + 1 iterations.

Proposition 4: A preconditioned MINRES method with
preconditioner P k

1 will terminate in at most min{nk
a, nd}

iterations when solving the linear system (14).
Proof: We know that

rank(U k
1 V (Uk

1 )T ) ≤ min{rank(U k
1 ), rank(V )}.

Since rank(U k
1 ) = nk

a and from Lemma 1, rank(V ) =
min{nk

a, nd}, therefore

rank(U k
1 V (Uk

1 )T ) ≤ min{nk
a, nd}. (18)

From Theorem 3, it can be concluded that a preconditioned
MINRES method with preconditioner P k

1 will terminate
in at most min{nk

a, nd} iterations when solving the linear
system (14).

In most predictive control problems, we have n i > nd. In
this scenario the preconditioner P k

1 is quite effective, because
it reduces the maximum number of iterations to nd, so we
recommend the use of preconditioner P k

1 if nk
a > nd.

2) A Block Diagonal Preconditioner: If nk
a ≤ nd, we

propose a block diagonal preconditioner of the form

Pk
2 := Uk

1 V̄ (Uk
1 )T + W k

1 , (19)

where V̄ is a block diagonal approximation of V , which is
calculated by the following semidefinite program

min
V̄

‖V̄ − V ‖∞ subject to V̄ ≥ 0. (20)

Our focus on the block diagonal preconditioner is mainly
due to two reasons. Firstly, the matrices H and F have a
special structure that can be exploited to convert H̄ into a
banded matrix with bandwidth (2n+m). If we pick all block
matrices of size (2n + m) from the permuted H̄ to form
a block diagonal approximation of permuted H̄ , then after
pre-multiplying it by Ḡ and post-multiplying with (Ḡ)T it
still remains banded. This could be one way of forming V̄ .
However, we prefer solving the semidefinite program (20),
since this guarantees that Pk

2 > 0, because W k
1 > 0.

Positive-definiteness is a requirement for a preconditioner
in the MINRES method [13, pp. 119-120]. Secondly, all
subsystems associated to each block diagonal of P k

2 would be
independent and can be implemented in parallel if a parallel
computer architecture is available.



C. Implementation Scheme

The linear system (14) is solved with a preconditioned
MINRES (PMINRES) method. The preconditioner P k

1 is
selected if nk

a > nd, otherwise preconditioner P k
2 is cho-

sen. There could be two implementation schemes for solv-
ing (14). One way could be to precompute V off-line and
then Uk

1 V (Uk
1 )T can be formed by just picking the rows

and columns of V according to U k
1 . Secondly, the LU-

factorization of the permuted H̄ can be computed off-line
and H̄−1v for any vector v can be computed by using
backward and forward substitution. In the second approach
we only need to store the sparse LU-factorization matrices,
while in the first approach we need to store the whole dense
matrix V . We prefer the second approach in this paper, since
it exploits the sparsity and requires less memory.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of each method is mea-
sured in flops. The cost of an IPM per iteration of the
Riccati recursion method [2] is given in Table I. The cost
of matrix-vector multiplication in the MINRES method is
(2n + m)2N + (n + m)nk

a. The total cost of solving (14)
with the MINRES method is given in Table I, where N k

MINRES
denotes the number of MINRES iterations required at the k th

iteration of an IPM. It is observed in numerical simulations
that Nk

MINRES is roughly constant. Note that only high-order
terms are mentioned in Table I. However, all terms, including
the lower order ones, are taken into account in the numerical
results presented in Section VI.

TABLE I

COMPUTATIONAL COST OF AN IPM PER ITERATION.

Method Flops
Riccati (3n3 + 6n2m + 3nm2 + 1

3
m3)N+

Recursion [2] l(n2 + 2nm + m2)(N + 1)

MINRES (4(2n + m)2N + 4(n + m)nk
a)Nk

MINRES

VI. NUMERICAL RESULTS

We present a case study to evaluate the performance of
our proposed method. Consider a system of q := n

2 equal
masses connected by springs and to walls at the ends. The
mass of each block is 1 kg and the spring constant of
each spring is taken as 1 N/m. There is no damping. There
are m actuators connected to the first m masses and each
can exert a maximum force of ±0.5. The displacements of
the masses are restricted to ±4. This continuous-time state-
space system is transformed into a discrete-time system using
a sample time of 0.5 sec. The objective is to regulate the
displacements with the given constraints on displacements
and control inputs. The regulator tuning matrices are taken
as R = I, M = 0, and Q = [Ip 0]T [Ip 0], where p =
n/2 and the states have been ordered such that the first p
states describe the displacements. The matrix P satisfies
the associated discrete-time algebraic Riccati equation. A
number of simulations is carried out with initial conditions
x = 3.5[1 1 0 · · · 0]T , θ0 = 1nd

, ν0 = 1ne , φ
0 = s0 =

1ni , ε = 10−3, δ = 1.5, ζ = 6. The values of δ, φ0 and s0

are selected such that all inequality constraints become δ-
active at k = 0.

Fig. 1(a) indicates that the rate of convergence of the
MINRES method when solving the original linear system (7)
is very slow, but much faster for the modified system (14).
This rate of convergence is further enhanced using a precon-
ditioned MINRES (PMINRES) method. It is also observed
in some cases that the unpreconditioned MINRES fails to
converge when solving (7) and the solution never reaches
the desired accuracy, due to the high condition number of
matrix Ak. This shows that iterative methods without a
preconditioner is not a good option for IIPMs. Fig. 1(b)
indicates that the condition number of the original system
increases while the condition number of the modified system
remains almost the same as the iteration k of Algorithm 1
increases. Fig. 1(c) indicates that the number of δ-active in-
equality constraints decreases as the iteration k of Algorithm
1 increases. Fig. 1(d) indicates that the normalized error in
the solution of the modified system (13a) gets reduced as the
IPM iteration number increases.

To see the growth of computational cost with the number
of states n, simulations are carried out with fixed inputs m
and horizon length N . Fig. 2(a) shows that the cost of
PMINRES method is less than the Riccati recursion method.
The plots of n2/2000 and n3/6500 are also plotted for
comparison. Note that the PMINRES method roughly scales
with O(n2). Secondly, keeping n and m fixed, simulations
are carried out for varying N and results are plotted in
Fig. 2(b), which indicates that PMINRES roughly scales
with O(N).

VII. CONCLUSIONS

The ill-conditioning of the linear system in the final
iterations of an interior point method is well-known, and
iterative methods are more sensitive to numerical errors for
ill-conditioned linear systems. Through the modification of
the ill-conditioned system to a well-conditioned one, an
efficient iterative scheme for solving a QP problem was
developed in this work. We provide an upper bound on
the error of the approximation used, which decreases as the
IPM iteration increases. It is shown that the modified, well-
conditioned linear system can be solved using the precon-
ditioned minimal residual (PMINRES) method with fewer
iterations, compared to the original ill-conditioned system.
Results obtained from numerical simulations indicate that
the computational complexity of our proposed method scales
quadratically with the number of states and linearly with
the horizon length. We expect that our scheme is applicable
generally to other applications of interior point methods.
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APPENDIX I
DEFINITION OF MATRICES AND VECTORS

H :=
[

IN ⊗ Q̄ 0
0 P

]
where Q̄ :=

[
Q M

MT R

]

F :=
[ −In 0

0 IN ⊗ [0 − In]

]
+

[
0 0

IN ⊗ [A B] 0

]

If Ji = J, Ei = E ∀ i ⇒ G :=
[

IN ⊗ [J E] 0
0 JN

]
If di = d̄ ∀ i ⇒ d := IN ⊗ d̄, f(x) :=

[−xT 0
]T

xk :=
[

(θk)T (νk)T (φk)T
]T

W k := (Φk)−1Sk

rk
B := rk

H − GT (Sk)−1
(
Φkrk

G + rk
S

)
Δφk := (Sk)−1

(
Φkrk

G + rk
S + ΦkGΔθk

)
Δsk := (Φk)−1

(
rk
S − SkΔφk

)
rk
H := − (

Hθk + FT νk + GT φk
)
,

rk
F := − (

Fθk − f
)

rk
L := rk

G − (Φk)−1(rk
S + σμk1ni)

rk
G := Gθk − d + sk, rk

S := −ΦkSk1ni

APPENDIX II
PROOF OF PROPOSITION 3

From (12),

Δzk
1 =

(
Ak

1 + Ak
2(W k

2 )−1(Ak
2)T

)−1
(bk

1 + Ak
2(W k

2 )−1bk
2).

For small ε and A,X ∈ R
p×p, the Sherman-Morrison-

Woodbury formula [12, §2.1.3] can be written in the form

(A + εX)−1 = A−1 − εA−1XA−1 + O(ε2). (21)

Let W̄ k
2 := W k

2 /δ, then from (21):

Δzk
1 = (Ak

1)−1bk
1 − δ−1(Ak

1)−1Ak
2(W̄ k

2 )−1(
(Ak

2)T (Ak
1)−1bk

1 − bk
2

)
+ O(δ−2). (22)

The infinity norm of the error ek := Δẑk
1 − Δzk

1 can then
be calculated as

‖ek‖∞ ≤ δ−1
(
c2
2‖bk

1‖∞ + c2‖bk
2‖∞

)
+ O(δ−2),

where c2 and c3 are defined as in the statement of Proposi-
tion 3.
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