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Abstract. Computing the solution to a system of linear equations is
a fundamental problem in scientific computing, and its acceleration has
drawn wide interest in the FPGA community [1–3]. One class of algo-
rithms to solve these systems, iterative methods, has drawn particular
interest, with recent literature showing large performance improvements
over general purpose processors (GPPs). In several iterative methods,
this performance gain is largely a result of parallelisation of the matrix-
vector multiplication, an operation that occurs in many applications and
hence has also been widely studied on FPGAs [4, 5]. However, whilst
the performance of matrix-vector multiplication on FPGAs is generally
I/O bound [4], the nature of iterative methods allows the use of on-
chip memory buffers to increase the bandwidth, providing the potential
for significantly more parallelism [6]. Unfortunately, existing approaches
have generally only either been capable of solving large matrices with
limited improvement over GPPs [4–6], or achieve high performance for
relatively small matrices [2,3]. This paper proposes hardware designs to
take advantage of symmetrical and banded matrix structure, as well as
methods to optimise the RAM use, in order to both increase the perfor-
mance and retain this performance for larger order matrices.

1 Introduction
The large amount of resources available on modern FPGAs have made them
suitable for accelerating floating point applications. The solution to a system
of linear equations is a recurring sub-problem within many scientific computing
problems [7], and hence there is considerable value in accelerating this operation.
Iterative methods are one type of algorithm to solve a system of linear equations
and recently studies have shown that by using FPGAs on these algorithms it is
possible to achieve performance improvements of up to an order of magnitude
over general purpose processors (GPPs) [2, 3].

The reason FPGAs are capable of accelerating iterative methods, such as
the conjugate gradient and minimum residual (MINRES) algorithms [8], is that
these algorithms often contain lots of inherent parallelism, the majority of which
originates from a repeated matrix-vector multiplication. Furthermore, as it can
be shown that in general this operation consumes the best part of the execu-
tion time of the algorithms [9], parallel execution of this operation significantly



reduces the overall execution time. Unfortunately, highly parallel matrix-vector
multiplication circuits require the use of the on-chip RAM to buffer data so as
to provide the desired bandwidth, and hence the available RAM on the FPGA
limits the maximum matrix order that can be implemented.

Given many problems in scientific computing result in large matrices, it is of
interest to determine the extent to which this performance can be maintained
for such matrices. To achieve this, this paper proposes hardware architectures
for performing matrix-vector multiplication that can take advantage of banded
matrix structure, symmetry within the matrix, or both. Banded matrices are
sparse matrices of a specific structure such that all of the non-zero values lie
within a specified bandwidth of the diagonal, and these arise in many problems,
for example when solving partial differential equations [10]. Symmetric matrices
are square matrices that are equal to its transpose, and these are of particular
interest as both conjugate gradient and MINRES algorithms will only converge
to a solution provided the input matrix is symmetric.

This paper will demonstrate that by exploiting these properties, it is pos-
sible to reduce the RAM requirements. Furthermore, as embedded RAMs on
FPGAs have specific structures, this paper proposes an optimisation strategy
using integer linear programming (ILP) in order to translate this reduced RAM
requirement into the minimum use of embedded RAMs. Finally, it will be shown
that by applying these strategies for saving RAM, it is possible to move the
source of limitation on parallelism from RAMs to be a function of the look-up
tables and dedicated multipliers which are used to construct floating point com-
ponents. As a result, this work also goes on to describe parameterisable hardware
architectures, depending upon matrix characteristics such as the bandsize and
matrix order, which can scale to larger matrices and obtain as much parallelism
as possible. The main contributions of this paper can be summarised as follows:

– Hardware architectures for banded matrices and symmetric matrices that
can significantly extend the scalability to large order matrices and achieve
higher degrees of parallelism,

– An optimisation strategy to reduce the number of embedded RAMs depend-
ing upon problem specification,

– Hardware architectures that can trade parallelism with FPGA resources to
achieve greater scalability.

This paper begins with a survey of existing implementations of matrix-vector
multiplication in Section 2, before describing our architectures in Section 3. Some
results showing the benefit of this approach are then given in Section 4, before
the work is concluded in Section 5.

2 Related Work

There has been a large amount of research into FPGA acceleration of floating
point matrix-vector multiplication. The two main factors that distinguish these
approaches are the method to store the matrix and how the on-chip RAM is
utilised.



At one extreme is the work by El-Kurdi et al. [5]. This implements a stream-
ing approach such that the ‘stripes’ containing the non-zeros for the matrix and
the vector are held in off-chip RAM and streamed through a set of processing
elements, with one processing element for each stripe to achieve the maximum
parallelism. The advantage of this approach is that due to the streaming nature,
it can operate on arbitrarily large matrices, provided there is sufficient off-chip
RAM. The disadvantage of this approach is that the maximum number of stripes
and hence the maximum parallelism is limited by the I/O bandwidth from a 1.76
single precision GFLOPs peak on a Stratix S80 to 1.5 single precision GFLOPs.

The work by Morris et al. [1] is slightly different, storing the matrix in a more
traditional fashion, using Compressed Sparse Row (CSR) format [11], which
consists of all non-zero values of the matrix, an index to the column the value lies
in, and an index for when each new row begins. The hardware then must match
several matrix values with their corresponding vector element and performs the
multiplications in parallel, before accumulating the results. In comparison to the
work by El-Kurdi et al., it stores the vector on-chip to perform these parallel
multiplications and this slightly improves the maximum performance. However,
it is still limited by I/O, and storing these vectors on chip means its scalability
depends on the available RAM to store these vectors. Further work by Zhuo et al.

[4,12] examined in detail the floating point data hazards, improving the reduction
circuits that accumulate these results to use less silicon, but the performance
was still limited by I/O to be 2.88 single precision GFLOPs, or 2.16 GFLOPs in
practical simulations on a Virtex2 Pro.

DeLorimier and DeHon [6] create an implementation which similarly targets
sparse matrix-vector multiplication for matrices stored in CSR format, but it is
specifically aimed at accelerating this function within iterative methods. This
operation is special as the same matrix is used for every iteration, and hence
this approach suggests loading the matrix into on-chip embedded RAM once,
from which it can be re-used multiple times allowing much more parallelism as
a result of the significantly higher memory bandwidth. Using this method, it
achieved a performance of up to 1.5 sustained double precision GFLOPs on a
Virtex2-6000. However, the maximum matrix size and performance in this work
is limited by the available memory to store the matrix.

The work by Lopes et al. [2] and previous work by the authors [3] acknowledge
that the more modern FPGAs have much larger memories and the floating point
support has improved, and hence maximise the performance of the conjugate
gradient algorithm and MINRES respectively, by storing on dense matrices using
the on-chip RAM. With dense matrices, there is no need for matching vector
elements, and hence matrix-vector multiplication can be achieved easily using
a pipelined dot-product core consisting of a vector multiplier and adder-tree,
as shown in Figure 1. In both works, this proved to be the major performance
increase, with the latter reporting up to 53 sustained single precision GFLOPs,
which could translate to approximately a factor of 10 performance increase over
the peak theoretical performance of a Pentium 4, for matrices of orders up to
145.



Fig. 1: Dot Product Circuit.

The work by Lopes et al. was then extended for banded matrices to examine
RAM savings [13]; this allowed the maximum order to be extended from 92 in the
dense case to 236 in the banded case for a thin band size of 5. However this work
only implemented a basic architecture which performs parallel multiplication
for the size of the band, but stores the entire vector in registers meaning that
resource use still grows with matrix order, an approach which will be shown to
be inefficient.

The aim of this work is to describe hardware architectures and RAMs configu-
rations to perform the matrix-vector multiplication with the minimum hardware
in such a way that they could easily be plugged into an implementation of an
iterative method such as [2] or [3].

3 Performing Matrix-Vector Multiplication
This section describes simple modifications to the architecture as shown in Figure
1 to solve matrices with specific structures using a high level of parallelism. We
begin with a detailed description of banded matrices before describing the hard-
ware architectures and RAM configurations to implement matrix-vector multi-
plication for this type of matrix, discussing in detail how this same approach
can be used to handle both thin and wide bands. We then describe how this ap-
proach can easily be extended to handle symmetric matrices, reducing the RAM
requirements, before discussing our procedure to optimise the use of RAM and
LUT resources on an FPGA given this RAM requirement. Finally, we discuss
our approach to trade parallelism for scalability for larger matrices.

3.1 Matrix-Vector Multiplication for Banded Matrices

Banded matrices are matrices where all the non-zero elements lie within some
known bandsize M from the main diagonal, as shown in Figure 2(a). As the
location of the non-zeros is known a priori, simple structures can be used to
hold these values such as Compressed Diagonal Storage (CDS) [11], shown in
Figure 2(b).

Using CDS to store the matrix, all zeros that do not fall into the band are not
stored. This corresponds to (N −M)(N −M +1) saved elements. However, as is
clear from Figure 2(b), there are still some zeros in this storage. These zeros do
not reflect any in the original matrix, rather they reflect the fact that at the band
ends there are no elements and hence zeros are added instead. This corresponds
to a total of M(M + 1) additional zeros. This implies that if 2M − 1 > N ,
the amount of added zeros created from this redundancy could be greater than
the number of zeros that are avoided by using this storage format. This section
discusses these cases separately.
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(a) Banded Matrix using Traditional Storage.
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(b) Compressed Diagonal Storage.

Fig. 2: Methods to Store a Banded Matrix. Each column will be stored in a separate RAM, as shown
in Figures 1 and 5.

Thin-bands (2M −1 ≤ N) In comparison to the method for dense matrices,
the first difference is that instead of using N parallel multipliers, it is only
necessary to perform parallel multiplications for the bandsize (2M − 1), as the
result of any other multiplications would be zero. The other slight complexity is
that if the matrix is stored using CDS, the associated vector element for each
RAM will change at each cycle. This is demonstrated in Figure 3 which shows
the desired multiplications over time.
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Fig. 3: Required Multiplication over time. In this figure, the values in grey represent the required
vector elements, whilst the values in white represent the required matrix elements from RAM. Any
0 value refers to a multiplication that need not be performed.

However, from Figure 3, it should be clear that the required vector element
for each multiplier is simply shifted once per clock cycle. This would require
little additional hardware in comparison to Figure 1, which uses a vector of reg-
isters, as the shift could be achieved using a serial-in-parallel-out shift-register.
Furthermore, this shift register need only be of size 2M − 1, as opposed to a
vector of N registers.

Wide-bands (2M − 1 > N) There are two issues when using wide bands.
The first is the excessive storage, as mentioned above, the other is that when
using a banded matrix, the number of parallel multiplication is equal to 2M −1,



but if 2M − 1 > N , this would mean the number of multipliers is greater than
the size of the vector, and hence any such multiplications would correspond to
a multiplication by zero.

As a result, in order to minimise resources, the number of parallel multipliers
should be restricted to N . To map this to the RAMs, the proposed solution to
‘wrap’ the data in the RAM around N columns, as shown in Figure 4. The
vector can also easily be ‘wrapped’ by feeding the output of the final output of
the shift register back into the input, and adding a multiplexer to choose between
this input and the vector input, this is shown in Figure 5. The control for this
multiplexer is simple and requires little additional hardware.
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(a) Matrix with Wide Band.
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(b) Matrix with Wrapped Wide Band.

Fig. 4: Wrapped Wide Bands.

Fig. 5: Banded Dot Product Circuits.

Whilst using N columns of RAM to store the matrix appears to be no better
than a dense implementation, there are two main benefits to this wrapping ap-
proach. The first is that it allows the same hardware to be used for both cases;
the second is that, excluding the dense case, using the optimisation process de-
scribed in Section 3.3, it is possible to save some RAM.

3.2 Matrix-Vector Multiplication for Symmetric Matrices

With symmetric matrices, it is only necessary to either store the lower or upper
diagonal matrix. Interestingly, extending CDS (Figure 2(b)) to only store the
symmetric portion is straightforward: all that needs to be done is to remove the
columns that only hold the redundant data, i.e. all the columns to the left of
that holding the diagonal. However, whilst this reduces the RAM requirements,
in order to use the same architecture (Figure 5), one must emulate the behaviour
of the extra RAMs used for band storage. Interestingly, the organisation of the
RAMs in CDS makes it quite simple to achieve this. Observing Figure 2(b), the
values that have been removed in the symmetric storage are simply seen to be
a delayed version of other columns, the required delays shown in Figure 6.



Fig. 6: Symmetric Shift Register.

Implementing delays for symmetry on FPGAs Using FPGAs, there are
three potential methods to create this delay. The simple method would be to
use FIFOs made up of either shift registers or RAMs. The problem with using
this method is that if the delay is large, these FIFOs may also become large and
this may use a lot of resources.

Alternatively, some FPGAs have embedded RAMs which can implement true
dual-port memory [14]. In this case, one port could access the current value,
and the other port select the delayed value, meaning the delay could then be
implemented simply by using a delayed counter which would require minimal
additional circuitry. However, there are more subtle issues when using embedded
RAMs. Xilinx BRAMs on a Virtex 5 are 36KBit, and can be configured in one
of two ways: as 2-18KBit Block RAMs implementing simple dual-port RAM;
or one single 36KBit true dual-port RAM [14]. This implies that by using the
Block RAMs in true dual-port fashion, the amount of flexibility of the RAMs
is reduced. Viewing this in another way, the likelihood of a large portion of
an embedded RAM being empty is heavily increased, and this can reduce the
number of RAMs available and impact the potential parallelism.

The final choice is that if the delay required for symmetry is greater than the
size of RAM needed to store a column, then the same RAM can be used to also
feed the multiplier for the symmetrical delay without requiring a second port, as
only one of the two multipliers will require input data at any given time. Given
these three options, determining the optimum use of resources is described in
the following section.

3.3 Minimising RAM use
The amount of RAM required to store the matrix is dependent upon the the size
of matrix N , the bandsize M , and the number of LUTs on the FPGA the user is
willing to allow to be used in the place of embedded RAMs. In order to optimise
the configuration, this section proposes an integer linear programming (ILP)
formulation, which can be solved by many existing solvers, such as CPLEX [15].
A high-level description of this ILP is given in Figure 7(a), with the formal
ILP problem given in Figure 7(b). This section discusses how this formal ILP is
obtained.

Notation As shown in Figure 2(b), the matrix columns in CDS contain trailing
zeros. It is not necessary to store them, and hence the RAM requirement for
each column decreases. In contrast, as shown in Figure 6, the symmetric delay



Given input matrices of order N and
bandsize M for P problems,

min: Overall RAM Use

subject to:

Matrix Memory Constraints

Symmetric Delay Constraints

Available Register Constraints

(a) ILP Problem General Description.

min:

M
∑

i=1

2xi + y1i + y2i

subject to:

∀i, 2Bxi + By1i + z1i ≥ ri

∀i, 2Bxi + By2i + z2i ≥ si

M
∑

i=1

z1i +

M
∑

i=1

z2i ≤ R

∀i, xi, y1i, y2i, z1i, z2i ∈ Z

(b) Formal ILP Problem.

Fig. 7: Minimising RAM using ILP.

required increases for each column. As each column has different requirements,
the variable i is used as an index for the M columns, with i = 1 being the
column containing the diagonals. For the ILP, the values for the RAMs required
and symmetric delay required for column i can then be denoted as ri, and si

respectively. The maximum capacity of the BRAMs in terms of the number of
words they can store is denoted as B, and the number of registers allocated by the
user as an alternative to embedded RAMs as R; the choice of R will typically be
the number of unused registers, and hence will vary depending upon the type of
FPGA and the number of resources used for other functions in a given hardware
implementation.

There are three choices that to store matrix elements and to implement the
delays: true dual-port RAM, simple dual-port RAM or shift-registers, and as
described in Section 3.2, true dual-port RAM can both store matrix elements
and implement symmetric delay, whereas separate simple dual-port RAM or
shift-registers are needed to implement this delay. To simplify the notation, for
each column i, integer variables which represent the number of true dual-port
RAMs, simple dual-port RAMs, simple dual-port RAMs used for delay for sym-
metry, shift-registers and shift-registers used for delay for symmetry, are denoted
as xi, y1i, y2i, z1i, z2i respectively. As the RAMs and shift registers are physical
components, these must be integer variables, making this an ILP.

Objective function The aim is to minimise the RAM use, so the objective
function is a summation of the variables for the various RAMs. However, as the
true dual-port RAMs are twice the size of the simple dual-port RAMs, the cost
for all xi variables is twice that of y1i and y2i.

Matrix Memory and Symmetric Delay Constraints The three types of
storage must satisfy the matrix memory and symmetric delay constraints for
each column. The complexity in this approach is that, as mentioned in Section
3.2, the true-dual port rams contribute to both the symmetric delay and matrix
memory constraints, and thus this same variable appears in both inequalities.

It should be noted that the values ri and si must be calculated prior to
implementing the ILP. As i increases, the RAM requirement for each column of
a matrix incrementally decreases, and hence the memory requirement for ri is
given by (N−i+1). Furthermore, in previous works [2,3,6] it has been highlighted



that due to the deep pipelines in floating point operators on FPGAs, in order
to maintain high sustained performance it was necessary to perform matrix-
vector multiplication on many different problems in a pipeline, and each of these
problems would have to be stored in RAM. This can easily be incorporated
into the model by modifying the memory requirement for P problems to be
P (N − i + 1). In contrast, as i increases, the symmetric delay requirement for
each column increases incrementally, but for delays, it is no longer necessary to
store multiple problems, and hence si can be found to be i−1. Also, as mentioned
in Section 3.2, if i > N , then there is no need for a separate RAM to implement
the extra delay, and hence si is given by i − 1 if i ≤ N and 0 if i > N .

Finally, one should note that by replacing symmetric delay constraints with
extra memory constraints, it is possible to use this same ILP for banded matrices.

Available Register Constraints A final constraint is added to allow a user to
trade BRAM with registers. This is likely to be problem dependent, determined
by the FPGA resources used elsewhere and the total available resources.

3.4 Trading Performance with Slices
It will be shown in Section 4 that the significant reduction in memory use that
this method provides implies that it would no longer be the memory available
that limits the maximum matrix order of the matrix-vector multiplication, rather
the slices and multipliers become the limiting factor.

The reason for the growth in slices is that the number of floating point units
required to perform the parallel multiplication grows according to min(N, 2M −
1). The solution would be to perform partial multiplications of size ⌈min(N, 2M−
1)/α⌉, where α is an integer, and use a reduction circuit, several of which are
discussed in [12], to sum these partial multiplications. Any problems caused
by the ceiling function are avoided by extra multiplications by zero. As it is
desirable to achieve as much parallelism as possible, α should be as small as
possible. The circuit required for the case of α = 2, which would perform half
the multiplication of the first half of the row during odd cycle and the second
during even cycles, is shown in Figure 8. For different choices of α, only the
reduction circuit would change, many of which are discussed in [12].

Fig. 8: Example Parallel Circuit for Large Dense Matrices.

The problem with this circuit is that parallelism is reduced by approximately
a factor of α and hence the maximum performance of the circuit will similarly
decrease. The counter side is that the number of slices will decrease by approx-
imately the same factor as the number of multipliers and size of the reduction
tree is reduced. This method could therefore be used for any general circuit to
trade resources in terms of DSPs and registers for scalability.



4 Results

4.1 RAM Use

The main benefit of this work is that it significantly reduces the RAM use. Figure
9 consists of four graphs showing the percentage of embedded RAMs of a Virtex
5 LX330T that are required to hold banded matrices of warying widths. In these
examples, the number of pipelined problems has been set to P = 20, whilst the
number of registers that can be used instead of RAMs has been set to be equal
to the size of one simple dual-port RAM, which corresponds to approximately
0.5% of the slices of the FPGA.

(a) Band=20. (b) Band=40.

(c) Band=60. (d) Dense.

Fig. 9: RAM Use.

The greater scalability of this approach is clearly shown for the thinnest
bandsize, when M = 20, which demonstrates that a large amount resources can
be saved in comparison to the basic method storing a dense matrix, the maximum
matrix order can be extended from 120 to 470 in the banded case and 930 in
the symmetric banded case. It should be noted that this bandwidth would, at
the maximum, require 39 parallel floating point multiplications, and hence could
not be fed using off-chip RAM. As the bandsize increases, though this difference
gets smaller, it is still significant. However, it is interesting to note that the
difference between the dense and banded case decreases much faster than the
difference between the dense and the symmetric case. The reason for this is that
the symmetric delay is only a function of N , whereas storing the band instead
of implementing this delay is a function of N and P . It is also worth noting that
in the graph where there is a wide band of M = 60, there is indeed still RAM
savings using the banded format as opposed to storing it in the dense format,
as mentioned in section 3.1.



4.2 Parallelism

The other claims of this work are that by reducing the amount of RAM used,
it is possible to obtain greater parallelism, and this parallelism becomes limited
by the registers and DSPs and hence it becomes necessary to trade parallelism
for scalability. In order to demonstrate this, Figure 10 compares the resource
use, post place and route, of matrix vector multiplication for a dense matrix of
increasing order, using the architecture from Figure 1 that was used in previous
works and this approach. The number of problems has been set to P = 14 for
this is what was used for the largest matrix in [3], the previous work which claims
the highest performance.

Fig. 10: Resource Use

This graph demonstrates several points of interest. Firstly it shows that this
work approaches the maximum performance achievable on an FPGA for matrix-
vector multiplication in IEEE single precision floating point, in that it uses
almost all of the slices and DSPs, with most of these being used as floating point
components. This is unlike the method for traditional storage, in which case the
RAM limits the maximum possible parallelism; it is clear that the RAM required
for traditional storage exceeds that available for a matrix order of 150. It is also
interesting that the transition for RAMs is much smoother for our method than
for using traditional storage; this is a result of the fact our approach reduces the
probability RAMs are empty, as mentioned in Section 3.2. In addition, this graph
demonstrates the value of reducing the parallelism to increase the scalability.
Finally, one should note that whilst there is still limited scalability, this is due to
the focus on a dense matrix with a large number of pipelined problems. However,
this is nonetheless a valuable test as this component could easily be plugged into
the iterative solvers in [2, 3] to improve their performance and scalability.

5 Conclusion

Overall, this work has described how to create a parameterisable circuit to imple-
ment matrix-vector multiplication that could be plugged into existing hardware
implementations of iterative methods. Furthermore, it has shown that by taking
into account symmetry and banded matrices, only simple hardware changes to



an implementation of matrix-vector multiplication circuit using a pipelined dot-
product circuit, along with an optimisation strategy for RAM use, are required
to significantly improve both the scalability and performance of the circuit.

Finally, one should note that any algorithm containing matrix-vector mul-
tiplication which is suitable for on-chip buffering of data could use this circuit,
whilst the contributions to reduce RAM use on FPGAs could be applied to any
circuit that stores banded or symmetric matrices on-chip.
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