
Algorithms and Arithmetic: Choose Wisely
Invited Paper

George A. Constantinides
Imperial College London

Abstract—I will introduce a semi-formalism to allow
us to conceptually reason about the differences between
customised arithmetic design, as one might see in FPGA-
based compute, and general purpose arithmetic, as one
might find in microprocessor design. This framework will,
I hope, expose to the reader the reason that we should be
thinking carefully about appropriate data representations
when designing custom hardware for compute, as well
as clearly showing the link between these decisions and
algorithmic ones. I will then provide a concrete example
from the literature on matrix computation where some
careful algorithmic tweaking results in the ability to use
fixed-point arithmetic and, hence, far higher performance
than would otherwise be achieved.

I. PROBLEM SETTING

Consider a numerically intensive computational task,
such as often found in matrix computation. This will
frequently come to the designer as a pre-existing algo-
rithm A, often pre-parameterised by types for manipu-
lating approximations to real numbers, most commonly
floats or doubles. The task is: ‘implement this
algorithm in hardware’. Let us denote this algorithm
(using floating point types) as A(F). Sometimes the task
will instead arrive as a problem description P : ‘I need
some hardware to solve this problem’. We can imagine
the two as related by A(F) ∈ P , where we envisage that
P corresponds to a whole set of acceptable algorithms. In
practice, when working with a pre-existing algorithm, we
often imagine that ‘if only we were working in arbitrary
precision’, then the result of the algorithm would give an
exact solution to the problem i.e. that A(R) together with
some notion of and bounds on Quality uniquely define
P . Quality here can consider numerical error but also
properties such as the silicon area and energy consumed,
and the execution time. Of course this is not the case
when starting with a problem description, for example
an arbitrary precision implementation of a fixed number
of Jacobi iterations does not exactly solve a system of
linear equations! Nevertheless, no matter how we come
across our problem P , so long as we conceptually have
a quality function QualityP(A(D)) defining how well
Algorithm A operating with data type D implements a

solution to problem P , we can start our design process.
If we were designing a general purpose microproces-

sor, then we are not clear beforehand what algorithms
will be executed on the microprocessor. Our goal must
therefore be to design our numerical representation to
work well across a range of problems. One can envisage
this as a multi-objective optimization, where E denotes
some kind of expectation operator:

maximiseD : EP,A(D)∈P {QualityP(A(D))} (1)

We can interpret this as: ‘I’m trying to find a datatype
so that problems generally get solved to high quality’.
The history of IEEE-754 illustrates the complexity of
solving this problem in practice [1]. I argue here that
taking these lessons directly to custom hardware is not
appropriate, because in this context we should be solving
a different problem:

maximiseA(D)∈P : QualityP(A(D)) (2)

Note the differences: P is now a free variable, in-
dicating that our hardware is problem specific. We are
free to choose any algorithm / data type combination to
maximise quality for this algorithm. It follows directly
that the optimal value attained in the latter case is always
at least that obtained in the former case, and this is
one of the main reasons we use FPGAs for compute
acceleration; pick your algorithm and datatype to suit
your application, rather than trying to recreate processor
hardware in an FPGA.

II. CASE STUDY

One very common algorithmic kernel in matrix com-
putation is the Lanczos iteration [2]. This iteration forms
the basis of various well-known methods like the method
of Conjugate Gradients (CG) [3] and the Minimum
Residual method (MINRES) [4] which are in turn used
in many large-scale numerical codes. We will use this
kernel as a case study, basing this section on [5].

This code is typically implemented using floating-
point arithmetic, because the dynamic range of the vari-
ables involved can be significant and is data dependent.



Algorithm 1 Lanczos Iteration
Require: Initial iterate r1 such that ||r1||2 = 1, q0 = 0,

β0 := 1.

1: for i = 1 to imax do
2: qi ← ri/βi−1
3: zi ← Aqi
4: αi ← qTi zi
5: ri+1 ← zi − αiqi − βi−1qi−1
6: βi ← ||ri+1||2
7: end for

For an FPGA implementation, fixed-point arithmetic
might be preferred for reasons of efficiency, yet in fixed-
point absence of overflow cannot be guaranteed for this
code. There are tools [6], [7], [8] that could be used
to prove bounds on the growth of internal variables,
allowing for a priori variable scaling, but only for a fixed
iteration number i or maximum iteration count imax, not
independent of or parametric in these variables.

However, the algorithm itself can be modified to make
it more ‘fixed-point friendly’. It is shown in [5] that if
we replace the matrix A ∈ RN×N with Â = MAM
where M is a diagonal matrix with elements Mii =(∑N

j=1 |Aij |
)−1

, then overflow never occurs and we can
safely use fixed-point arithmetic. This transformation is
just a change of coordinate system, meaning that all the
standard uses of the Lanczos iteration, such as solving
a system of linear equations, are equally valid in this
new coordinate system. In the paper, it is shown that
this led to a sustained FPGA fixed-point performance
outstripping the peak theoretical GPU performance by a
factor of four.

I believe there are two lessons we can directly draw
from this case study: (i) revisiting algorithmic assump-
tions from scratch can provide significant benefit when
deciding on a number representation, and (ii) there is
still considerable work to be done on automating such a
process. The two alternatives to automation of numerical
representation selection are, of course, human effort and
reversion to a lack of customisation, i.e. back to formu-
lation (1) presented in this paper. Both are commonly
used in practice today.

III. CONCLUSION

By far the most considerable automation work has
been done on automating the selection of a data represen-
tation while keeping the algorithm fixed. This problem
was considered by the VLSI design community and then

by the FPGA community, initially in the context of cir-
cuits for digital signal processing [9]. This corresponds
to a third formulation:

maximiseD s.t.A(D)∈P : QualityP(A(D)) (3)

Note here that A and P are free variables, indicating
that we are interested in a datatype for a particular algo-
rithm solving a particular problem. Automation of this
problem is often differentiated by the class of algorithm
considered, and there has been little work on algorithms
containing fully fledged control structures [10].

Recently we have made some progress on automating
formulation (2) by incorporating automated rewriting
rules to allow code refactorisation [11], but there remains
much to do in this space.

The introduction of hardened floating-point units in In-
tel FPGAs provides an interesting opportunity to identify
those parts of an algorithm truly benefiting from floating-
point versus those opportunistically using floating-point
‘because it’s available’, potentially leading to exciting
performance enhancements.

The future of automated analysis for the co-design of
algorithm and data representation is very bright. I do
hope the interested reader will get in touch - we have
work to do together!
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