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Wordlength Optimization for Linear Digital
Signal Processing

George A. Constantinides, Peter Y. K. Cheung, and Wayne Luk

Abstract—This paper presents an approach to the wordlength allocation
and optimization problem for linear digital signal processing systems
implemented as custom parallel processing units. Two techniques are
proposed, one which guarantees an optimum set of wordlengths for each
internal variable, and one which is a heuristic approach. Both techniques
allow the user to tradeoff implementation area for arithmetic error at
system outputs. Optimality (with respect to the area and error estimates)
is guaranteed through modeling as a mixed integer linear program. It
is demonstrated that the proposed heuristic leads to area improvements
of 6% to 45% combined with speed increases compared to the optimum
uniform wordlength design. In addition, the heuristic reaches within 0.7%
of the optimum multiple wordlength area over a range of benchmark
problems.

Index Terms—Bitwidth, digital signal processor (DSP), optimization,
precision, wordlength.

I. INTRODUCTION

This paper explores and examines design automation for linear time-
invariant (LTI) applications. A design paradigm is proposed based on
nonuniformity of signal scaling and precision between physically dis-
tinct parallel processing elements. It is shown how the fixed-point quan-
tization effects of such designs can be estimated analytically, and that
the design process can be automated from an initial infinite-precision
behavioral specification.

The synthesis techniques presented in this paper arelossy synthesis
approaches [1]. This term is used to denote that, while the behavior
of the synthesized system is not identical to that of the algorithm
specification (due to fixed-point quantization effects), the error can
be specified and controlled by the user of the synthesis system, to
enable tradeoffs with other figures of merit. Both optimum (with
respect to the area and error estimates) and heuristic approaches
to wordlength determination are proposed. The heuristic technique
presented results in area improvements from 6% to 45% combined
with speed increases when applied to standard signal processing
benchmarks, while coming within 0.7% of the optimum area over
small benchmark problems.

The digital signal processing (DSP) systems targeted by the
optimization technique discussed in this paper are LTI systems [2].
This class of systems includes the most widely used DSP operations:
finite-impulse response (FIR) and infinite-impulse response (IIR)
digital filters, as well as linear transformations such as the discrete
cosine transform, Fourier transform, and RGB to YCrCb conversion.
Although not every DSP system is LTI, important subsystems will
typically have this property.

Section II summarizes the relevant background, after which the ar-
chitectures and models used are introduced in Section III, ending in
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Section III-G with a statement of the problem addressed in this paper.
In Section IV, it is shown how this problem can be transformed into a
mixed-integer linear program (MILP), and thus be solved using stan-
dard solvers. A heuristic technique is introduced in Section V.

The ideas presented have been implemented within the Synoptix
high-level synthesis system [1] which, given a Simulink block diagram
and user-specified bounds on roundoff noise for each of the outputs,
creates an area-optimized DSP algorithm implementation in a struc-
tural hardware description language suitable for implementation on
field-programmable gate arrays (FPGAs). Results from the Synoptix
system are presented in Section VI before concluding the paper in Sec-
tion VII.

The main original contributions of this paper are, therefore, a
detailed exposition of the multiple wordlength design paradigm,
including an approach which captures the full nonconvexity of the
design space [3] and techniques for optimal and heuristic lossy
synthesis of linear time invariant systems. Specific features of this
analysis include

• formulation of the multiple wordlength assignment problem;
• a novel transformation of this problem into a mixed integer linear

program;
• a novel heuristic for the optimization of wordlengths in a multiple

wordlength system;
• an evaluation of the proposed heuristic in terms of its impact

on system area and speed, compared to the optimum uniform
wordlength implementation;

• a comparison of solution quality between the proposed heuristic
and the optimum results.

II. BACKGROUND

In [4], it has been demonstrated that a simplified version of the
problem addressed in this paper is NP-hard. There are, however,
several published approaches to wordlength optimization. Those
offering an area/signal quality tradeoff are of a heuristic nature [1], [5],
[6] do not support different fractional precision for different internal
variables [7], or assume that arithmetic error falls monotonically
in each signal wordlength [6], [8]. In contrast, this paper proposes
techniques which capture the full complexity of the error constraint
surface, allow multiple fractional precisions, and provide the choice
of a heuristic or an optimum solution (with respect to the area and
error models).

Some published approaches to the wordlength optimization problem
use an analytic approach to scaling and/or error estimation [5], [7], [9],
some use simulation [6], [8], and some use a hybrid of the two [10].
The advantage of analytic techniques is that they do not require rep-
resentative simulation stimulus, and can be faster, however, they tend
to be more pessimistic. There is little analytical work on supporting
dataflow graphs containing cycles, although in [9], finite loop bounds
are supported. Some published approaches use worst-case instanta-
neous error as a measure of signal quality [5], [7], [8] whereas some
use signal-to-noise ratio (SNR) [1], [6]. The proposals in this paper
use fully analytic error models, use SNR as a quality metric, and can
be applied to dataflow graphs containing cycles without the pessimism
exhibited by other analytic work. This is achieved at the cost of limiting
the domain of application to LTI systems.

The remainder of this section reviews in more detail some of the
more important literature in the field.

The Bitwise Project [9] proposes propagation of integer variable
ranges backward and forward through dataflow graphs. The focus is
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on removing unwanted most-significant bits (MSBs). Results from in-
tegration in a synthesis flow indicate that area savings of between 15%
and 86% combined with speed increases of up to 65% can be achieved
compared to using 32-bit integers for all variables.

The MATCH Project [7] also uses range propagation through
dataflow graphs, except variables with a fractional component are
allowed. All signals in the model of [7] must have equal fractional
precision; the authors propose an analytic worst-case error model
in order to estimate the required number of fractional bits. Area
reductions of 80% combined with speed increases of 20% are reported
when compared to a uniform 32-bit representation.

Wadekar and Parker [5] have also proposed a methodology for
wordlength optimization. Like [7], this technique also allows con-
trolled worst-case error at system outputs, however, each intermediate
variable is allowed to take a wordlength appropriate to the sensitivity
of the output errors to quantization errors on that particular variable.
Results indicate area reductions of between 15% and 40% over the
optimum uniform wordlength implementation.

Kum and Sung [6] and Cantinet al. [8] have proposed several
wordlength optimization techniques to tradeoff system area against
system error. These techniques are heuristics based on bit-true
simulation of the design under various internal wordlengths.

A useful survey of algorithmic procedures for wordlength determi-
nation has been provided by Cantinet al. [11]. In this work, existing
heuristics are classified under various categories. However, the “ex-
haustive” and “branch-and-bound” procedures described in [11] do not
necessarily capture the optimum solution to the wordlength determina-
tion problem, due to nonconvexity in the constraint space: it is actu-
ally possible to have alower error at a system output by reducing the
wordlength at an internal node [3]. Such an effect is not modeled in
the surveyed articles, and forms one of the novel elements of the MILP
model proposed in this paper. The novelty of the proposed heuristic lies
in the use of the error constraint, rather than just the objective function,
to guide the optimization procedure. As a result, the heuristic proposed
in this paper does not fall into one of the categories described in [11].

III. A RCHITECTURES ANDMODELS

A. Notation

For a directed graphG(V;E) with node setV and edge setE �
V � V , od(v) denotes the outdegree of a nodev 2 V , in(v) denotes
the set of in-edges incident to nodev andout(v) denotes the set of
out-edges incident to nodev.

Set subtraction is indicated by the operatorn, is used to represent
the set of integers, is used to represent the set of positive integers,
and is used to represent the set of real numbers.

For a functionf : X ! Y , f(X0 � X) � Y denotes the subset
fy 2 Y j9x 2 X 0 : f(x) = yg.
bxc represents the largest integer less than or equal tox.^ is used to

represent logical conjunction andL2fH(z)g represents theL2 norm
of a z-domain transfer functionH(z)[2].

B. Algorithm Representation

Definition 1: A computation graphG(V; S) is the formal represen-
tation of an algorithm.V is a set of graph nodes, each representing an
atomic computation or input/output port, andS � V � V is a set of
directed edges representing the data flow. An element ofS is referred
to as asignal. Only FORK nodes, representing branching dataflow, are
allowed to have greater than unit outdegree.

The node setV may be partitioned into subsets with the same type
V = VI[VO[VA[VD[VG[VF representing theINPORT, OUTPORT,
ADD, DELAY, GAIN, andFORK nodes, respectively.

Fig. 1. Multiple wordlength paradigm (S indicates sign bit,n denotes
wordlength andp denotes scaling).

If VG � V denotes the subset of nodes ofGAIN type, then
cw : VG ! is a function mapping theGAIN node to its coefficient
wordlength, andsc : VG ! is a function mapping the gain node to
its scaling or binary point location.

Note that this paper only considers the problem of optimizing signal
wordlengths; coefficient wordlengths are predefined and form part of
the design specification. This is common practice in LTI DSP design,
as coefficient quantization changes the system transfer functions only,
and can thus be considered within the framework of traditional linear
system theory.

Definition 1 is sufficiently general to allow any multiple input, mul-
tiple output (MIMO) LTI system to be modeled.

C. Multiple Wordlength Paradigm

Each two’s-complement signals 2 S in a multiple wordlength im-
plementation of computation graphG(V; S), has two parametersns
andps, as illustrated in Fig. 1. The parameterns represents the number
of bits in the representation of the signal (excluding the sign bit), and
the parameterps represents the displacement of the binary point from
the least-significant bit (LSB) side of the sign bit toward the LSB. Note
that there are no restrictions onps; the binary point could lie outside
the number representation, i.e.,ps < 0 or ps > ns.

This multiple wordlength implementation style inherits the speed,
area, and power advantages of traditional fixed-point implementations
[12], since the computation is fixed-point with respect to each
individual computational unit. However, by potentially allowing each
signal in the original specification to be encoded by binary words with
different scaling and wordlength, the degrees of freedom in design are
significantly increased.

Definition 2: An annotated computation graphG0(V; S;A) is a
formal representation of a finite-wordlength implementation of compu-
tation graphG(V; S).A is a pair(n;p) of vectorsn 2 jSj,p 2 jSj,
each with elements in one-to-one correspondence with the elements of
S. Thus, for eachs 2 S, it is possible to refer to the corresponding
annotation(ns; ps). Note that throughout this paper we shall deal en-
tirely with `1-scaled systems [2], i.e., those where the scaling vectorp

is predetermined from the system transfer functions to avoid overflow
errors. Alternative scalings are considered elsewhere [13].

D. Wordlength Propagation and Conditioning

In order to predict the quantization effect of a particular wordlength
and scaling annotation, it is necessary to propagate the wordlength
values and scalings from the inputs of each atomic operation to the
operation output, as shown in Table I. The “q” superscript is used to
indicate a wordlength before quantization, i.e., truncation or rounding.

The wordlength values derived through format propagation may then
be adjusted according to the known`1 scaling of the output signal. If the
`1-scaled binary point location at signals isps, whereas the propagated
value derived isp0

s (> ps), then this corresponds to a most significant
bit (MSB)-side-width reduction. An adjustmentnqs  nq0s � (p0

s �
ps) must then be made, wherenq0s is the propagated wordlength value,
as illustrated in Fig. 2. Conceptually, this operation is inverse sign-
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TABLE I
PROPAGATION OFWORDLENGTHS

Fig. 2. Wordlength and scaling adjustment.

extension. This analysis allows correlation information derived from`1
scaling to effectively take advantage of a type of “don’t-care condition”
not usually considered by synthesis tools.

When designing a multiple wordlength implementation
G0(V; S;A), certain choices ofA are clearly suboptimal. Consider, for
example, aGAIN node which multiplies signals of wordlengthns by
a coefficient of format(n; p). If the output signals0 has been assigned
wordlengthns > ns+n, then this assignment is suboptimal, since at
mostns + n bits are necessary to represent the result to full precision.
Ensuring that such cases do not arise is referred to as “conditioning”
the annotated computation graph. Conditioning is an important design
step, as it allows the search space of efficient implementations to be
pruned, and ensures that the most efficient use is made of all bits of
each signal. It is, thus, possible to define awell-conditionedannotated
computation graph to be one in which there are no superfluous bits
representing any signal.

Definition 3: An annotated computation graphG0(V; S;A) with
A = (n;p) is said to bewell-conditionedif and only if ns � nqs
for all s 2 S.

During heuristic optimization, to be described in Section V, ill-condi-
tioned annotated computation graphs may result as intermediate struc-
tures. An ill-conditioned annotated computation graph can always be
transformed into an equivalent well-conditioned form in the iterative
manner shown in Algorithm 1 . For a well-connected graph [3], this
algorithm will always terminate.

Algorithm 1: Algorithm WlCondition
Input: An Annotated Computation Graph

Output: An annotated computation graph,
with well-conditioned wordlengths and
identical behavior to the input system

begin
Calculate and for all signals

(Table I)
Form from , and for all signals

while

Set
Update for all affected signals
(Table I)
Re-form from , and for all
affected signals

end while
end

E. Noise Model

This section describes the noise model used within the wordlength
optimization procedures. The noise model is novel in two respects.
First, it does not make the usual assumption that the wordlength before
quantization has a negligible effect on the statistical properties of the
noise injected due to truncation or roundoff. (This is usually the case in
a uniprocessor implementation due to the wordlength before quantiza-
tion being much larger than the wordlength after quantization). Second,
it treatsFORK nodes in a special way, to ensure statistically uncorre-
lated error when different outputs of aFORKhave different wordlength.
Taken together, these novel aspects allow precise modeling of the com-
plexities of the design space, including its nonmonotonicity and, in-
deed, nonconvexity [3].

At each point within the computation where truncation or rounding
is performed, it is possible to estimate the variance of the injected noise
analytically, using a discrete noise model introduced in [14]. The vari-
ance of such an error signal, when truncating fromn1 bits ton2 bits
with a scalingp, is given by

�2 =
1

12
22p(2�2n � 2�2n ): (1)

For each signals 2 f(v1; v2) 2 S : v1 =2 VF g a straightforward
application of (1) may be used withn1 = nqs, n2 = ns, andp = ps,
wherenqs is as defined in Section III-D.

Signals emanating from nodes of fork type must be considered some-
what differently. Fig. 3(a) shows one such annotated fork structure, to-
gether with possible noise models in Fig. 3(b) and (c). Either model is
valid, however, Fig. 3(c) has the advantage that the error signalse0[t],
e1[t], ande2[t] show very little correlation in practice compared to the
structure of Fig. 3(b). This is due to the overlap in the low-order bits
truncated in Fig. 3(b). Note also that thez-domain transfer functions
from the noise inputs to the system outputs are different under the two
models—this will be discussed in further detail in Section IV-C, where
modeling ofFORK-noise is considered.

As a result of the correlation, thecascadedmodel is preferred, as it
allowsL2 scaling [2] to predict the propagation of error to the system
outputs.

F. Component Libraries and Area Models

It is assumed, when constructing a cost model, that both a dedicated
resource binding is to be used [15] and that the area cost of wiring is
negligible, i.e., the designs areresource dominated[15]. These assump-
tions simplify the construction of an area-cost model, since it becomes
sufficient to estimate separately the area consumed by each computa-
tion node, and then to sum the resulting estimates.

The problem of area modeling has been approached from a “black
box” perspective, as use is made of highly optimized integer arithmetic
cores available from FPGA manufacturers as the computational ele-
ment at the center of each multiple wordlength component.

The area model for a multiple wordlength adder is reasonably
straightforward. The ripple-carry architecture is used since FPGAs
provide good support for fast ripple-carry implementations [16], [17].
Consider the multiple wordlength adders illustrated in Fig. 4. The
adders have widthmax(na � fv; nb) � mv + 2 bits. Each bit may
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Fig. 3. Modeling post-FORK truncation.

not consume the same area, however, because in Fig. 4(a) and (b)
some bits are only required for carry propagation; their sum outputs
are unused. The cost model, therefore, has two parametersk1 andk2
corresponding to the area cost of a sum-and-carry full adder, and the
area cost of a carry-only full adder. Also, in Fig. 4(c) and (d), some
of the result is drawn from the “overhang” of inputa and may thus
be obtained at no cost. Combining these observations, the area of an
adder is expressed in (2), shown at the bottom of the page.

Area estimation for constant coefficient multipliers is more prob-
lematic, as a constant coefficient multiplier is typically implemented
through recoding as a series of additions. This implementation style
causes the area consumption to be dependent on coefficient value. In
addition, modeling the exact implementation scheme used would make
the model highly vendor-specific.

Instead, a simple area model has been constructed which models the
linear area growth in both coefficient and data wordlength as well as

Fig. 4. Multiple wordlength adder formats. Each adderv 2 V has input
signalsa andb and output signalo 2 S. The number of bits by which input
b must be shifted left is denotedf , and the number of resulting MSBs which
may be ignored due tò -scaling is denotedm .

computational elements required only for carry propagation. This is
shown in (3) for a nodev 2 VG with input i 2 S and outputj 2 S.
Recall thatcw denotes coefficient wordlength. The coefficient values
k3 andk4 have been determined through least-squared fitting to syn-
thesis results from several hundred multipliers of different coefficient
value and width.

Av = k3cw(v)(ni + 1) + k4 ni + cw(v)� no : (3)

The area of a DELAY nodev 2 VD is simple, as the area consumed
varies linearly with the input wordlengthni, givingAv = k5(ni +1).

G. Optimization Formulation

Combining the area models presented in Section III-F into a single
area measure onG gives a cost metricAG(n;p). Combining the
L2-norm error-variance models into a vectorEG(n;p) with one
element per output, allows the wordlength-optimization problem to be
formulated in Problem 1 .

Problem 1 (Wordlength Optimization):Given a computation graph
G(V; S), and a scaling vectorp, the wordlength optimization problem
may be defined as to selectn such thatAG(n;p) is minimized subject
to (4), whereE denotes the user specified bound on error variance at
each system output.

n 2
jSj

EG(n;p) �E : (4)

It has been shown that this constraint space is nonconvex in nature
[3], and that the optimization problem is NP-hard [4]. In the following
sections, two approaches to the above problem are proposed: mod-
eling the problem as a mixed integer linear program (Section IV) and
a heuristic technique (Section V).

Av =
k1(no + 1) + k2(max(na � fv; nb)�mv � no + 1); if no +mv � max(na � fv; nb) + 1

k1(max(na � fv; nb)�mv + 2); otherwise
(2)
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IV. MILP M ODEL

The proposed MILP model contains several variables, which
may be classified as: integer signal wordlengths(n), integer signal
wordlengths before quantization(nq), binary auxiliary signal
wordlengths(�n), binary auxiliary signal wordlengths before quanti-
zation(�nq), binary decision variables (�, �, �), real adder costs(A),
integer adder auxiliary variables(�), and real fork node errors(E).
Each of these variable types and their uses will be described below.

Note that onlyADD, GAIN, andDELAY nodes consume area resources
(FORK nodes are considered free). However, adders have an inherently
nonlinear area model and thus while gains and delays are included di-
rectly in the objective function, the cost of each adderv 2 VA is rep-
resented by a distinct variableAv , introduced in Section IV-B.

An area-based objective function for the MILP model may then be
formulated (5), as described in Section III-F: the three terms present
represent the adder area, gain area, and delay area, respectively. Con-
stant terms from theGAIN andDELAY area models are not included in
the objective function, as they play no role in the optimization.

min :
v2V

Av +
v2V

k3cw(v) + k4 nin(v)

+k4nout(v) +
v2V

k5nin(v) (5)

Constraints on quantization error propagation are much harder to
cast in linear form due to the exponentiation in the noise model (Sec-
tion III-E). In order to overcome this nonlinearity, we propose to use
auxiliary binary variables,�ns;b, one for each possible wordlengthb that
a signals could take. By using these binary variables, it is possible to
recast expressions of the form2�2n , which appear in error constraints,
into linear form as n̂

b=1 2
�2b�ns;b.

The relationship between the auxiliary variables and the wordlength
variables that is expressed in (6) and (7) ensures that each signal can
only have a single wordlength value. Note that in order to apply this
technique, it is necessary to know the upper-bound wordlengthsn̂s
for eachs 2 S. Derivation of these bounds will be discussed in Sec-
tion IV-A. Note also that signals driving fork nodes are not considered
in this way; fork node error models are considered separately due to
the cascade model, as described in Section IV-C

8s2Snin(VF ); ns �

n̂

b=1

b � �ns;b =0 (6)

8s2Snin(VF );

n̂

b=1

�ns;b =1: (7)

In a similar manner, it is necessary to linearize the exponentials in
wordlengths before quantization (8) and (9). This time signals driven
by fork nodes are not considered as, from the cascade model, the
wordlength before quantization of any one of these signals is simply
the wordlength of the preceding signal in the cascade. Similarly,
signals driven byINPORT nodes are not considered, as their prequanti-
zation wordlength is defined completely by the system environment.

8s 2 Snin(VF )nout(VF )nout(VI); n
q
s �

n̂

b=1

b�nqs;b =0 (8)

8s 2 Snin(VF )nout(VF)nout(VI);

n̂

b=1

�nqs;b =1: (9)

For each system output, we propose to use an error constraint of
the form given in (10). This inequality derives from a direct combina-
tion of the noise model described in Section III-E with the linearization

process described above. Note that for simplicity of explanation, only
single-output systems are considered in this section, however, the tech-
nique is easily generalizable to multiple-output (MIMO) systems.

Note that those signals driven by system inputs are considered sep-
arately [third term of (10)], since there is no need for Boolean vari-
ables representing the prequantization wordlength of a variable, as this
parameter is defined by the system environment. PlaceholdersEv are
used for the contribution from fork nodes [first term of (10)]. These will
be defined by separate constraints in Section IV-C due to the cascade
model.

v2V

Ev +
s2Snin(V )nout(V )nout(V )

22p L
2
2fHs(z)g

�

n̂

b=1

2�2b�ns;b �

n̂

b=1

2�2b�nqs;b

+
s2out(V )

22p L
2
2fHs(z)g

n̂

b=1

2�2b�ns;b � 2�2n

� 12E : (10)

A. Wordlength Bounds

Upper bounds on the wordlength of each signal, before and after
quantization, are required by the MILP model in order to have a
bounded number of binary variables corresponding to the possible
wordlengths of a signal.

The proposed bounding procedure consists of three stages: per-
forming a heuristic wordlength optimization on the computation graph
using the heuristic to be described in this paper; using the resulting
area as an upper bound on the area of each gain block within the
system, and hence, on the input wordlength of each gain block; and
“conditioning” the graph, following Algorithm 1 (Section III-D). The
intuition is that the bulk of the area consumed in a DSP implementation
typically comes from multipliers. Thus, reasonable upper bounds
are achievable by ensuring that the cost of each single multiplier
cannot be greater than the heuristically achieved cost for the entire
implementation. Of course, this only bounds the wordlength of signals
which drive gain blocks. In addition, the wordlength of signals driven
by primary inputs is bounded by the externally defined precision of
these inputs. Together, this information can be propagated through the
computation graph by Algorithm 1, resulting in upper bounds for all
signals under the condition that any closed loop must contain a gain
block.

We denote bŷns the so-derived upper bound on the wordlength of
signals 2 S and byn̂qs the upper bound on the wordlength of the same
signal before LSB truncation.

B. Adders

It is necessary to express the area model of Section III-F as a set
of constraints in the MILP. Also, a set of constraints describing how
the wordlength at an adder output varies with the input wordlengths is
required.

1) Area Model: In the objective function (5), the area for each adder
v 2 VA was modeled by a single variableAv . It will be demonstrated
in this section how this area can be expressed in linear form.

Let us define�v for an adderv 2 VA with input signalsa andb by
(11), where the inputs “a” and “b” are chosen to match with Fig. 4 so
that it isb which needs to be left-shifted for alignment purposes. Recall
thatfv is also illustrated in Fig. 4, and models the number of bits by
which inputb must be shifted

�v = max(na � fv; nb): (11)
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This definition is used to simplify the expression for the area of an
adder, from Section III-F, as

Av =
k1(no + 1) + k2[�v �mv � no + 1]; if no +mv � �v + 1

k1[�v �mv + 2]; otherwise
:

(12)

The value ofmv is independent of the wordlengths, and for an adder
can be expressed asmv = max(pa; pb) + 1� po.

The nonlinearities due to themax operator in (11), the decision in
(12), and the choice of which input needs to be left-shifted for align-
ment, must all be linearized for the MILP model. This is achieved
through the introduction of four binary decision variables�v1, �v2, �v3,
and�v4 for each adderv 2 VA, to be described in the following para-
graphs.

For the remainder of this section, we consider a general adder with
inputsi andj and outputo, to distinguish from the more specific case
considered above, where inputb was used to denote the left-shifted
input to an adder.

In order to linearize (11), ifpj � pi, then it is sufficient to include
(13)–(16) in the MILP. Otherwise, (17)–(20) should be included in the
MILP. These two cases derive from differing values ofmv , which can
be determined statically during MILP construction rather than MILP
solution. The right-hand side of each inequality (13)–(20) consists of
a trivial bound on the left hand side, multiplied by a binary decision
variable. These constraints are used in order to allow disjunctions and,
thus, implications, for example selecting�v1 = 0 in (13) givesni �
nj+pj�pi < 0, whereas selecting�v1 = 1 gives�v�nj+pj�pi �

0. Allowing choice of�v1 as an optimization variable results in the
implicationni � nj � pj + pi ) �v � nj + pj � pi, as the other
constraints are trivially satisfied. [This construction corresponds to one
of the two cases of the “max” operator in (11)].

ni � nj + pj � pi <�v1(n̂i + pj � pi) (13)

�v � nj + pj � pi �(1� �v1)(�n̂j � pi + pj) (14)

ni � nj + pj � pi ��v2(�n̂j + pj � pi) (15)

�v � ni �(1� �v2)(�n̂i) (16)

nj � ni + pi � pj <�v1(n̂j � pj + pi) (17)

�v � ni + pi � pj �(1� �v1)(1� n̂i � pj + pi) (18)

nj � ni + pi � pj ��v2(�n̂i + pi � pj) (19)

�v � nj �(1� �v2)(�n̂j): (20)

Note that�v is only bounded from below by the constraint given.
The equality in (11) is guaranteed through the positive coefficient of
Av in the objective function.

In order to linearize (12), inequalities (21)–(24) are included in the
MILP. These constraints model the choice in (12) as a pair of implica-
tions, in an identical manner to that described above.

no � �v +mv � 1 � �v3(mv � �̂v) (21)

Av + (k2 � k1)no � k2�v + k2(mv � 1)� k1

� (1� �v3) (k2 � k1)n̂o � k2�̂v + k2(mv � 1)� k1

(22)

no � �v +mv � 1 < �v4(n̂o +mv � 2) (23)

Av + k1(mv � �v � 2)

� (1� �v4)k1(mv � �̂v � 2): (24)

2) Output Wordlength:The prequantization output wordlength of
an adder with inputsi andj and outputo is given bynqo = max(ni �

Fig. 5. Output permutations in a three-way fork.

pi; nj � pj) + po. We may express this as (25) and (26), since pre-
quantization wordlengths only appear with negative coefficient in the
error terms, so the error constraints can be relied upon to reducenqo to
achieve equality

n
q
o �ni � pi + po (25)

n
q
o �nj � pj + po: (26)

C. Forks

In systems containing a reconverging fork node, complex error be-
havior can occur due to the different possible orderings of wordlength
at the fork output, under the cascade error model introduced in Sec-
tion III-E. Fig. 5(a) illustrates the six different possible configurations
of a three-way fork with outputsn1, n2, andn3. For example, the
top-left figure corresponds ton1 � n2 � n3 and the bottom-right
figure to n3 � n2 � n1. Each of the “Q” blocks is a truncation
of least-significant bits in a signal. If we denote byHi thez-domain
transfer function from signali to the output in the original specifica-
tion [Fig. 5(b)], then thez-domain transfer function from the truncation
error injected to the system output is shown underneath the relevant
“Q” block in Fig. 5(a) [2].

In order for the MILP to fully model this behavior, it is necessary
to consider each of the possible orderings. Let�v be aw-tuple, repre-
senting an order on aw-way fork nodev 2 VF with input signali 2 S.
Thus, for example,�v(2) is the second largest signal width. We may
express the error resulting from truncation of those signals driven by
nodev as (27), with one constraint per possible ordering, a total ofw!.
Here,^ represents Boolean conjunction, andHs(z) is thez-domain
transfer function from signals 2 S to the output in question.

w�1

r=1

(n� (r) �n� (r+1)))

Ev =22p
w�1

r=1

L
2
2

w�r

h=1

H� (h)

� (2�2n � 2�2n )

+ L
2
2

w

h=1

H� (h)(2
�2n

� 2�2n )

(27)

Applying DeMorgan’s theorem and linearizing the resulting disjunc-
tion gives (28)–(32). Each exponential is then further linearized using
the binary auxiliary variables. The� and� variables in (28)–(32) are
additional binary decision variables and the right-hand side of each in-
equality consists of a trivial bound on the left-hand side, multiplied by
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a decision variable. At least one inequality is nontrivial, a property en-
sured by (32)

n�(1) � n�(2) < �v�(1);�(2)n̂�(1) (28)

n�(2) � n�(3) < �v�(2);�(3)n̂�(2) (29)

. . .

n�(w�1) � n�(w) < �v�(w�1);wn̂�(w�1) (30)

Ev � 22p

�

w�1

r=1

L
2
2

w�r

h=1

H�(h)

� (2
�2n

� 2�2n )

+ L
2
2

w

h=1

H�(h) (2
�2n

� 2�2n )

� ��v�2
2(p �1)

w�1

r=0

L
2
2

w�r

h=1

H�(h) (31)

w�1

r=1

�v�(r);�(r+1) + �v� � w � 1: (32)

It is not necessary to explicitly consider quantization of the input
signal to a fork node, since the above constraints use the prequantiza-
tion wordlength of the fork inputnqi . It is necessary, however, to guar-
antee that the input signal provides enough wordlength for the largest
of its outputs (33)

ni � na; ni � nb; . . . ; ni � nf : (33)

D. Gains

In contrast to adders and fork nodes, modeling of gain nodes
is straightforward. The area of a gain node is linear and, thus, has
already been modeled in the objective function (Section IV). The only
remaining constraint required is to model the prequantization output
wordlength of a gainv 2 VG with input signala, output signalo,
coefficient of wordlengthcw(v), and scalingsc(v). This constraint is
naturally in linear form (34), and thus needs no further attention

n
q
o = na + cw(v)� pa � sc(v) + po: (34)

E. Delays

Delay nodes also have a simple relationship between their input
wordlength and their output wordlength before quantization, shown in
(35) for the case of a delay node with inputi and outputo.

n
q
o = ni: (35)

F. MILP Summary

An MILP model for the wordlength optimization problem has been
proposed. This section collects the results from previous paragraphs,
in order to quantify the number of variables (36) and constraints (37)
present in the model. Each term in these equations is commented with
the variables or constraints to which it refers (a semicolon denotes the
comment). Note that the number of constraints given does not include

integrality constraints, the unit upper bounds on Boolean variables, or
slack variables introduced by the MILP solver

vars =
s2Sn in(V )

(n̂s + 1)+; (�ns;b andns)

s2Sn in(V )n out(V )n out(V )

(n̂qs + 1)+; (�nqs;b andnqs)

jVF j+; (Ev)

6jVAj+; (�v1; . . . ; �v4; �v; Av)

v2V

od(v)(od(v)� 1)f1 + (od(v)� 2)!g

; (� and�) (36)

cons =2jSnin(VF )j+; (6) and (7)

2jSnin(VF )nout(VF )nout(VI)j+; (8) and (9)

1+; (10)

10jVAj+; [(13)–(16) or (17)–(20)]and (21)–(24)

v2V

od
2(v) + 2od(v)(od(v)� 1)!+; (28)–(33)

jVGj + jVDj; (34) and (35): (37)

It can be seen that so long as the number of large-fanout fork nodes
is limited, the number of constraints in the MILP model grows ap-
proximately linearly in the number of nodes and signals. Under the
same conditions the number of variables can grow up to quadratically
with the number of signals because the upper bounds on each signal
wordlength will vary approximately linearly with the number of large
area-consuming nodes. Both parameters are dominated by any large-
fanout fork nodes, since the number of� variables and their associated
constraints grow combinatorially in the fanout.

Results from the MILP approach will be presented in Section VI.

V. HEURISTIC APPROACH

The proposed heuristic is shown in Algorithm 2. After performing an
`1 scaling, the algorithm determines the minimum uniform wordlength
satisfying all error constraints. The design at this stage corresponds
to a standard uniform wordlength design with implicit power-of-two
scaling, such as may be used for an optimized uniprocessor implemen-
tation. Each wordlength is then scaled up by a factork > 1, which
represents a bound on the largest value that any wordlength in the final
design may reach. In the Synoptix implementation,k = 2 has been
used. At this point, the structure may be ill-conditioned, requiring re-
duction to a well-conditioned structure, as described in Section III-D.

The resulting well-conditioned structure forms a starting point from
which one signal wordlength is reduced by one bit on each iteration.
The signal wordlength to reduce is decided in each iteration by reducing
each wordlength in turn until it violates an output noise constraint. At
this point, there is likely to have been some payoff in the reduced area,
and the signal whose wordlength reduction provided the largest payoff
is chosen. The wordlength of each signal is explored using a binary
search.

Although Algorithm 2 is a greedy algorithm, both the constraints and
the objective function play a role in determining the direction of move-
ment toward the solution. As a result, this algorithm is less dependent
on local information than a pure steepest-descent search, such as the
“heuristic procedure” of [11]. Experiments show this to result in im-
provements of 5%–6% in area over a pure steepest descent approach.

Algorithm 2 will, in general, provide better results under a convex
constraint space. However, the intuition is that any nonconvexity
present in the space should not affect its operation too severely: the
binary search mechanism will result in “jumping over” infeasible
portions of constraint space in some cases, and will remain stuck on
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one side of an infeasible region in other cases. In either case, since
the wordlengths are only reduced by one bit each time, the next
iteration is likely to face the nonconvexity from a different direction.
Nonconvexity can manifest itself in intermediate wordlength vectors
having infeasible error properties, however, the final wordlength
vector will always be feasible as moves are only ever performed in a
direction leading to a feasible solution, and the cost metricAG(n;p)
is monotonic inn.

Algorithm 2: Algorithm WLOptHeur
Input: A Computation Graph
Output: an optimized annotated computation

graph , with
begin
Let the elements of be denoted as

Determine through scaling
Determine , the minimum uniform
wordlength satisfying (4) with
Set
do
Condition the graph
(Algorithm 1)
Set Currentcost
foreach signal do
Set bestmin currentcost
Determine , if such a
exists, such that (4) is satisfied for
annotation

but not
satisfied for annotation

If such a exists, set
minval

If no such exists, set
minval

if minval bestmin do
Set bestsig , bestmin minval

end if
end foreach
if bestmin currentcost

while bestmin currentcost
end if

end

VI. RESULTS

Synoptix, a complete synthesis system incorporating the algorithms
in this paper, has been developed for implementation of multiple
wordlength systems in hardware. The input to Synoptix is a Simulink
[18] block diagram, and the output is a structural description in
VHDL. Third-party tools are then used to perform the low-level logic
synthesis, placement, and routing of the designs. The design-flow for
implementation on the Sonic platform [19] is illustrated in Fig. 6, with
the Sonic-specific parts shaded.

The system has been tested on several benchmark circuits, including
FIR and IIR filters, a discrete cosine transform (DCT), a polyphase
filter bank (PFB), and an RGB to YCrCb converter.

A. MILP Results

Fig. 7 illustrates area-error tradeoff curves for both a second- and a
third-order linear phase FIR filter [2]. For the second-order filter, re-

Fig. 6. Synoptix design flow.

sults for both four-bit and eight-bit inputs are given. For the third-order
filter, only results for a four-bit input have been obtained. Three curves
are present in each plot: the optimum uniform wordlength implemen-
tation, the heuristically derived multiple wordlength implementation
from Section V, and the optimum multiple wordlength implementation
achieved by solving the MILP presented in Section IV.

The results clearly illustrate the high-quality solutions achievable by
the heuristic solution, averaging only 0.7% with a maximum of 3.9%
worse than the optimum result. Thus while finding optimum solutions
for the general case is NP-hard, for practical examples the heuristic
can achieve near-optimal results (with respect to the area and error es-
timates).

As a concrete example, an optimum wordlength allocation for an
RGB to YCrCb converter described in [1] with four-bit inputs has also
been performed. This result shows an optimal cost of 79 logic cells
(four-input lookup tables), equal to the result achieved by the heuristic.
Fig. 8 illustrates the structure [20] and wordlengths of the RGB to
YCrCb converter for four-bit inputs (of range�112), four-bit coef-
ficients, and with an error-free Y, whereas a bounded error variance of
up to10�2 has been allowed for Cr and Cb. We believe such results,
even for small circuits, to be valuable as a benchmark against which
any new approaches could be compared.

The BonsaiG MILP solver [21] was used to solve the MILP models:
execution time ranged from 2 s to 6 min on a 512-MB RAM 1.2-GHz
AMD Athlon. This compares to less than 0.2 s for the heuristic solu-
tions on the same machine. Limits on the scale of the MILP solvable are
due to both excessive runtime and numerical instabilities in the MILP
solver.

B. Heuristic Results

Shown in Fig. 9 is a graph of area (measured in Altera logic cells
[16]) against specified error variance. This plot is representative in
terms of the general shape of the plots obtained for all designs. The
benchmark is a simple second-order (biquadratic) IIR digital filter.
Both the multiple wordlength design and the optimized uniform
wordlength structure are shown. The plot of area for a uniform
wordlength decreases in steep steps. This is because there is a sudden
change when the next lowest wordlength becomes feasible with
respect to the error constraints. This is not the case for the optimized
multiple wordlength structures, since there are many more optimiza-
tion variables and, hence, many different error powers are achievable.
In addition, the heuristic line lies consistently below the uniform line
(by 2% to 15%), showing a consistent area saving for this design.

Table II illustrates some further results from larger benchmark cir-
cuits. Both the number of logic cells (LCs) and maximum clock fre-
quency are reported. Each of these results corresponds to a single point
on the area-error tradeoff curve for the circuit, and have been placed and
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Fig. 7. Area/Error tradeoffs compared for a second- and third-order FIR filter.

Fig. 8. Optimal wordlength allocations for the ITU RGB to YCrCb converter.

routed in an Altera Flex10k70RC240–3 device (as used in the Sonic
[19] platform) except where otherwise stated. This device is represen-
tative of four-input lookup-table-based architectures, which form the
core logic fabric of most FPGAs.

The FIR filter is a 126-tap linear-phase low-pass Direct Form II
transposed [2] structure, suggested by [22] as a representative DSP de-
sign. The DCT is an eight-point, one-dimensional decimation-in-time
structure from [23] which has also been suggested as a benchmark

by [22]. Two versions of this benchmark have been synthesized,
one(DCT1) with equal error tolerance on all outputs, and the other
(DCT2) with required SNR reducing by 3 dB per DCT coefficient,
so that low-frequency coefficients are less noisy than high-frequency
ones. The IIR filter is of the fourth order, as used by [24] and is of
interest since it has a recursive structure. The PFB is the design given
in [25] for evaluation of the Streams-C compiler. The RGB to YCrCb
converter is of the form suggested by the ITU [20], and allows some

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 17, 2009 at 11:37 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 10, OCTOBER 2003 1441

Fig. 9. Circuit area against specified error power for an IIR biquadratic filter.

TABLE II
LOSSYSYNTHESIS RESULTS

quantization error in the Cr and Cb outputs whereas the Y output is
guaranteed to be error-free. This design is of particular interest since
the multiple wordlength approach can clearly be used to customize
the datapath in order to achieve these differential specifications. Each
of these circuits has been synthesized twice, once using an optimal
uniform wordlength structure, and once using the multiple wordlength
structure generated by the Synoptix tool. The DCT designs have been
synthesized on a device with a larger number of I/O pins, due to the
I/O-limited nature of the designs, whereas the FIR filter has been
synthesized on a device with a significantly larger logic capacity.

It should be noted that even for the uniform wordlength structures,
Synoptix has been used to automatically insert power-of-two scaling
[26], which is good practice in DSP design. Also, note that for both
uniform and multiple wordlength structures, these circuits represent a
completely unpipelined implementation of the specification, in order
to aid direct comparison of maximum clock ratefclk reported.

Table II illustrates that area reductions of between 6% and 45%
(mean 22%) have been achieved by using the multiple-wordlength syn-
thesis approach described in this paper. These area reductions have
been accompanied by a speedup in maximum clock frequency between
�3% and 39% (mean 12%), even though the estimated speed is not
considered by the cost function used for optimization. Interestingly, the
only benchmark to have been slowed down slightly as a result of the
optimization is the IIR filter. This is due to the increase of some signal
wordlengths on the critical path around the feedback loops in this filter.
Importantly, the largest area reductions and speedups have occurred in
both the FIR filter, which is the largest design shown, and the RGB
to YCrCb converter, which has a structure ideally suited to multiple
wordlengths since the error-free Y is calculated first, from which Cr
and Cb are derived [20].

For all results, execution time ranged from 0.03 s to 15 min 57 s on
a 512-MB RAM 1.2-GHz AMD Athlon.
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VII. CONCLUSION

This paper has introduced a method for automating the design of bit-
parallel multiple wordlength implementations of linear time-invariant
DSP systems. A lossy synthesis approach has been described, based on
optimizing the area consumption of the resulting implementation, sub-
ject to constraints on the finite precision errors. The techniques pre-
sented have been implemented in the Synoptix synthesis tool, which
takes a Simulink block diagram as input and generates a structural hard-
ware description language implementation.

It has been demonstrated that the multiple wordlength design para-
digm allows a broad design space to be searched by the synthesis tools,
leading to high quality results. An approach to obtain optimum solu-
tions (with respect to the area and error models) based on mixed in-
teger linear programming has been introduced, together with a heuristic
alternative. Results have been presented from the application of the
heuristic to benchmark DSP circuits, which show area reductions of
up to 45% (mean 22%) and speed increases of up to 39% (mean 12%)
compared with more traditional design techniques. The heuristic has
been shown to come within 0.7% of the optimum area estimate for
small benchmarks.

Although not demonstrated in this paper, it should also be noted
that limit cycle behavior [2] is generally less problematic in multiple
wordlength architectures than in their uniform wordlength equivalents
[3].

The construction of the MILP is described in detail in this paper,
however, no complete example MILP is given for space reasons. Sev-
eral examples can be found at: http://infoeng.ee.ic.ac.uk/~gac1/Opti-
mumWL.

Only LTI systems have been considered, restricting the domain of
application, but also allowing the use of fast and accurate analytical
error estimation, leading to a practical synthesis tool. We are currently
investigating extensions of the described approach for some classes
of nonlinear system [27]. In addition, we are incorporating resource-
sharing models into our optimization framework. Further work could
address the problem of wordlength optimization for different granu-
larities of arithmetic component, such as those embedded within some
recent FPGAs [17], as well as incorporating alternative arithmetic ar-
chitectures, such as redundant arithmetic.
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