
Evaluation of Design Trade-offs for Adders
in Approximate Datapath

Kan Shi and George A. Constantinides
Department of Electrical and Electronic Engineering

Imperial College London
London, UK

Email: {k.shi11, g.contantinides}@imperial.ac.uk

Abstract—Releasing the stringent accuracy requirement would
potentially offer greater freedom to create a design with better
performance or energy efficiency. In this paper, we evaluate the
design trade-offs for adders, which are key building blocks for
many applications. We demonstrate the optimum design metric
for adders, under the consideration of various design constraints,
such as accuracy, operating frequency, silicon area, different types
of adder structure and alternative form of computer arithmetic
for adder implementation. Two design scenarios are compared:
one is the conventional design scenario where timing closure
is met by adjusting operand word-lengths. The other is an
overclocking scenario where timing violations are allowed to
occur. We show that applying the overclocking approach to ripple
carry adders can be more beneficial than using fast adders to
achieve similar latency, because the worst cases only happen with
very small probabilities. We also show that using the conventional
approach on adders with new form of computer arithmetic is
optimal for a wide range of design constraints.

Keywords—approximate computing; adder; overclocking; online
arithmetic;

I. INTRODUCTION

Circuit performance has increased tremendously over the
past decades. However, in recent years people have observed
an end of performance scaling [1] due to the improvement
of CMOS technology to the nanometer regime. In order to
boost circuit performance, two standard design techniques are
commonly adopted: one is to heavily pipeline the datapath,
the other is to reduce the design precision. For the first tech-
nique, pipelining can be used to increase operating frequency,
whereas the overall computational latency will not be affected.
Therefore the utilization of this technique is limited in many
embedded applications, which are often designed with strict
latency specifications. The second technique is common espe-
cially with FPGA technology, which embodies the flexibility
to implement customized variable representation and is able to
optimize the operand word-length across the entire datapath to
meet a given performance and area constraint [2]. However,
the precision loss will inevitably introduce quantization errors
into the design.

Unfortunately, in both situations circuits are designed for
the worst cases. In order to avoid potential timing violations,
timing analysis tools tend to provide a conservative critical
path delay by adding guard bands and timing margins. How-
ever, continuing with this approach will become increasingly
expensive and difficult as technology shrinks.

To tackle this problem, a large volume of research activities
were focused on the design methodology of relaxing the 100%
accuracy requirements and design constraints, while reasoning
about the corresponding benefits and costs. Studies have shown
that computing approximately provides extra opportunities
to design circuits with better performance and less energy
consumption. A brief review of the work in this area is given
in Section II.

In this paper, we provide detailed evaluations of design
trade-offs for adders, which are key arithmetic primitives for a
broad range of applications. In order to provide the optimum
design choice for adders, we examine several design constrains
and options, such as accuracy, operating frequency, silicon
area, different types of adder structure, as well as different
forms of computer arithmetic for adder implementation. In
comparison to the conventional design scenario that timing
closure is achieved by truncating the operand word-length, we
take a radical step forward by adopting an alternative design
scenario, which is named “overclocking scenario”. In this
case, circuits are operated far beyond the conservation region
with full precision, while timing violation can be tolerated.
Previous work has shown that for many applications, it is
preferable to follow the overclocking scenario because the
worst case is triggered only by certain input patterns and hence
it happens rarely [3]. In addition to the adder structures that
are created based on standard binary arithmetic, such as ripple
carry adder and carry select adder, we also evaluate adder with
“online arithmetic” [4], which employs different style of data
representation to eliminate carry propagation. We demonstrate
experimentally on FPGAs that for limited area budgets, ap-
plying the overclocking approach to ripple carry adders can
be more beneficial than using fast adders to achieve similar
latency. With more relaxed area constraints, the online adder
outperforms in terms of accuracy or performance. Potentially
our study will provide circuit designers with guidance and
extra options when balancing between various design trade-
offs.

In summary, the main contributions of this paper are:

1) Detailed evaluation of three adder structures: ripple
carry adder, carry select adder and online adder;

2) Comparison of design scenarios and demonstration of
the optimum design choice under the consideration of
trade-offs between accuracy, performance and area.

The rest of this paper is organized as follows: we first

provide a brief overview of the relevant work in this area,
together with the background knowledge of online arithmetic
in Section II. The comparison between different adder struc-
tures and design trade-offs are detailed in Section III. This is
followed by the evaluation of optimum design choices when
considering trade-offs between accuracy, performance and area
in Section IV. The conclusion and suggestions of possible
future work is given in Section V.

II. BACKGROUND

A. Approximate Datapath Design

The International Technology Roadmap for Semiconduc-
tors (ITRS) has identified that additional benefits of manufac-
turing, test, power and timing can be achieved by releasing the
requirement of absolute correctness [5]. This fact has inspired
a series of studies to create circuits operating beyond the worst
cases and the safety margins. Typically this can be achieved
by either reducing the supply voltage [6] or increasing the
operating frequency beyond the rated value [3], [7]. The Razor
project [8] served as one of the exemplary designs, in which
both supply voltage and clock frequency were scaled over the
most conservative value, while the error rate was monitored
by using a self-checking circuit. It was shown that over 30%
power saving can be obtained at the cost of around 1% errors.

Another stream of research was focusing on proposing
either approximate circuit structures or design tools to trade
accuracy for performance and/or energy benefits. Work in this
area was inspired by the fact that many applications, e.g.
image processing and machine learning, were naturally error
resilient. For example, code analysis tools [9], [10] were devel-
oped to divide a program into precise parts and approximate
parts, which can then be mapped to hardware components
with different speed-grades and supply voltages. As for the
approximate hardware, numerous forms of architectures were
designed for basic arithmetic operators such as adders [11]
and multipliers [12]. For example, a under-designed multiplier
unit was proposed, of which the worst case was replaced
by a normal case based on straightforward Karnaugh-Map
analysis [13]. However, many of these techniques are designed
at gate-level or transistor-level, and they cannot be directly
applied onto existing hardware platforms such as FPGAs.

In this paper, we overcome the previous limitations by com-
paring two standard adder structures: ripple carry adder and
carry select adder, which are widely employed in mainstream
hardware platforms. We also compare a type of adder with
“online arithmetic”, which can be also found when designing
fast multipliers and embedded processors [14]. It is argued that
our approach can be efficiently applied to existing designs, and
we back up this hypothesis based on FPGA experiments.

B. Online Arithmetic

As an alternative form of computer arithmetic, online
arithmetic has been used in numerous applications such as
signal processing and control algorithms [15], [16]. Online
arithmetic was originally designed for digit-serial operation,
as illustrated in Fig 1. It can be seen that in order to generate
the first output digit, δ digits of inputs are required, where δ
is called the “online delay”. δ is normally a small constant,
which is independent of the precision. For ease of discussion,

Input X[j] x1

Input Y[j]

x2 x3 x4 x5 xN

y1 y2 y3 y4 y5 yN

 Output Z[j] z1 z2 z3 zN

MSD LSD

0 0 0

0 0 0

δ
MSD LSD

Time

Fig. 1. Dataflow in digit-serial online arithmetic, in which both inputs and
outputs are processed from the MSD to the LSD. δ denotes the online delay.

FA

A0 B0

S0

C0 FA

A1 B1

S1

C1 FA

Ai Bi

Si

Ci FA

An-1 Bn-1

Sn-1

CoutCin

μi

μRCA

Ci-1

Fig. 2. An n-bit ripple carry adder. µi and µRCA denote the propagation
delay of a full adder and the overall delay of RCA, respectively.

for the rest of this paper, the input data is assumed to be fixed
point numbers in the range (−1, 1). Based on this premise, the
online representation of N -digit operands and result at iteration
j are given by (1), where j ∈ [−δ,N − 1] and r denotes the
radix [17].

X[j] =

j+δ∑
i=1

xir
−i, Y[j] =

j+δ∑
i=1

yir
−i, Z[j] =

j∑
i=1

zir
−i (1)

MSD-first operation is possible only if a redundant num-
ber system is used. Normally there are two most com-
monly used redundant number representations: carry-save
(CS) [18] and signed-digit (SD) [19]. With SD representa-
tion, each digit is represented using a redundant digit set
{−a, · · · ,−1, 0, 1, · · · , a}, where a ∈ [r/2, r − 1]. In com-
parison, the standard non-redundant representation only uses a
digit set {0, · · · , r− 1}. Thus a standard number corresponds
to several possible redundant representations. For example, the
binary number 0.011 can be represented in SD form as 0.111,
0.101 or 0.011 among many other possible representations.

Due to the redundancy, the MSDs of the result can be
calculated using partial information from both inputs. Then
the value of the number can be revised using the subsequent
digits, because each number has multiple representations.

III. DESIGN TRADE-OFFS OF DIFFERENT ADDER
STRUCTURES

A. Ripple Carry Adder

Adders serve as a key building block for arithmetic oper-
ations. In general, the ripple carry adder (RCA) is the most
straightforward and widely used adder structure. As such,
in our previous work we proposed probabilistic models of
overclocking errors for RCA [3]. A brief summary of the
models is described below.

For an n-bit RCA, it is composed of n serial-connected full
adders (FA) as shown in Fig. 2. Typically the maximum fre-
quency of RCA is determined by the longest carry propagation.
Under the assumption that the carry propagation delay of each

FA is a constant value µi = µ, the critical path of the RCA
is: µRCA = nµ. For the sampling period TS , it follows that if
TS > µRCA, correct result will always be sampled. Otherwise,
intermediate result will be sampled and potentially generating
overclocking errors. The mean value of overclocking error is
modeled [3] as given by (2), where coefficient b is given in
(3) and it determines the maximum length of error-free carry
propagation.

Eoc =

{
2−b − 2−n−1, if b ≤ n

0, otherwise (2)

b :=

⌈
TS
µ

⌉
=

⌈
1

µ · fS

⌉
(3)

In the conventional scenario, a specific timing target can
be met by truncating the word-length of RCA while timing
violation is not permitted. This will result in truncation error
for most data. The mean value of truncation error is also
modeled [3] as given by (4), where parameters k and n
denote the word-length of RCA before and after truncation,
respectively.

Etrad =

{
2−n − 2−k, if n < k

0, otherwise (4)

In this paper we consider two design scenarios for RCA:
one is the overclocking scenario where timing violation is
allowed to happen while maintaining the original word-length;
the other is the traditional scenario by truncating RCA word-
length to meet timing. For a given fS , in the first design
scenario we have n = k. In the second design scenario we
have n = b− 1 to prevent timing violation while minimizing
the value of EO. Therefore the comparison between the two
scenarios in mean error value is given in (5) by updating (2)
and (4) respectively. As seen in (5), in theory the mean value
of error in the overclocking scenario (Eoc) is constantly two
times smaller than that in the traditional scenario (Etrad).

Eoc
Etrad

=
2−b − 2−n−1|n=k
2−n − 2−k|n=b−1

=
1

2
(5)

B. Carry Select Adder

Although smaller value of mean error can be achieved in
the overclocking scenario, it costs extra area because the full
precision is maintained. Instead, alternative adder structures,
such as carry select adder (CSA), are originally designed to
trade silicon area for low latency. In a CSA, the carry chain is
divided into multiple overlapped stages, and each stage con-
tains two RCAs and two multiplexers. For a given input, two
additions are performed simultaneously within a single stage
where the carry input is zero and one separately. One of these
two results is then selected according to the actual carry input.
Although this structure brings performance benefits, it costs
extra hardware resources compared to a standard RCA because
the carry chain is duplicated. Furthermore, multiplexers are
area-expensive to implement with FPGA technology.

C. Online Adder

In addition to standard binary arithmetic, alternative forms
of computer arithmetic were studied to boost performance. For
example, adder with online arithmetic is also designed for low

3:2

x1
+

x1
-

y1
+

3:2

3:2

3:2

3:2

3:2

y1
-

x2
+

x2
-

y2
+

y2
-

xN
+

xN
-

yN
+

yN
-

Cin1 Cin2

z2
+

z2
-

z3
+

zN
-

zN+1
+

zN+1
-

Binary

Bits:

Digits: x1 y1 x2 y2 xN yN

z2 zN+1

MSD LSD

Critical Path

z1
+

z1
-

z1

Fig. 3. An N -digit binary digit-parallel online adder. Both inputs and outputs
are represented using SD representation. “3:2” denotes a 3:2 compressor.

450 500 550 600 650

5

10

15

20

25

30

35

Frequency (MHz)

M
a

x
.

W
o

rd
−

L
e

n
g

th

RCA

CSA 2−stage

CSA 4−stage

OA

Fig. 4. The maximum word-lengths of different adder structures with respect
to a variety of frequencies. The results are obtained from Xilinx ISE 14.7.

latency at the cost of extra silicon area. The structure of a
digit-parallel online adder (OA) where all signals represented
with SD numbers of digit set {−1, 0, 1} is shown in Fig. 3.
The module “3:2” denotes a 3:2 compressor, which takes three
inputs and generates two outputs, and is logically equivalent
to a full adder (FA). A major advantage of the redundant
number system over the standard ripple-carry based arithmetic
is that the propagation of carry is eliminated, resulting in
a precision-independent computation time for addition. As
labeled in Fig. 3, ideally the computation delay of this adder
is only two FA delays for any operand word-length, at the
expenses of one extra FA for each digit of operands.

D. Design Trade-offs for Adders

In this section, we demonstrate the benefits of CSA and
OA in accuracy and performance, as well as the area overhead
in comparison to RCA. As an example, the maximum word-
lengths with respect to a variety of operating frequencies for
RCA, CSA and OA are illustrated in Fig. 4. In this experiment,
circuits are operated with timing closure, i.e. the conventional
design scenario is evaluated for all structures. We consider the
operand word-length of adders ranging from 32-bit to 4-bit.

As can be seen in Fig. 4, for a relatively relaxed frequency
requirement (e.g. 470 MHz), both CSA and OA can be
implemented with greater word-lengths than RCA. For CSA,

450 500 550 600 650
0

10

20

30

40

50

60

70

80

90

Frequency (MHz)

#
 o

f
L

U
T

s

RCA

CSA 2−stage

CSA 4−stage

OA

Fig. 5. The maximum area of different adder structures.

TABLE I. ADDER STRUCTURES AND DESIGN SCENARIOS
CONSIDERED IN THIS PAPER.

Adders Design Scenarios
Overclocking Traditional

Ripple Carry Adder
√ √

Carry Select Adder
√

Online Arithmetic Adder
√

this is because the stage parallelism enables a larger word-
length, even though the multiplexer delay limits the precision
of each CSA stage in comparison to RCA. For OA, an even
larger gap in word-length can be observed when compared
to RCA. Additionally, unlike RCA and CSA of which the
maximum word-length drops gradually with the increment of
frequency, OA maintains full precision across a large range of
frequencies. This is expected, because the critical path delay
of OA is theoretically irrelevant to the operand word-length as
discussed in Section III-C. However, we also observe that given
a large frequency requirement, the word-length of OA drops
drastically. Besides, CSA cannot be implemented with larger
precision than RCA either, because in this case the multiplexer
delay becomes comparable to the delay of the carry chain for
CSA, and it inhibits the benefits of parallelism.

We also record the corresponding area consumption of each
adder structure in terms of look-up-tables (LUTs) in FPGA
as depicted in Fig. 5. It can be seen that the CSA with 4
stages and 2 stages costs up to 4.5× and 3.1× area than
RCA, respectively. OA is also up to 3.8× larger than RCA.
Therefore, it is necessary to provide comprehensive evaluations
of different adders by considering the trade-offs between
accuracy, performance and area consumption. In summary,
the evaluated adder structures as well as design scenarios are
summarized in Table I.

IV. EVALUATION OF OPTIMUM ADDER STRUCTURE

Generally, our evaluation could be of interest to a circuit
designer in several ways. For example, suppose the algorithm
designer wish the circuit to run at a given frequency within
a specific area budget, while achieving the minimum output

error. Besides, for many applications, the circuit designer
would wish the circuit to operate as fast as possible with the
minimum resource usage, whilst a certain error budget can be
tolerated. In both cases, decisions must be made on which
adder structure achieves this minimum, and which design
scenario should be adopted. In our experiments, the inputs are
set to randomly generated data following uniform distribution.

A. Optimum Adder with Given Frequency and Area Require-
ments

For this type of applications, the available area and ex-
pected operating frequency are given at the design time. As an
example slice through the design space, in Fig. 6 we record
the mean relative error (MRE) with respect to a range of
operating frequencies for different design scenarios, when the
area budget is set to 35 LUTs and 55 LUTs separately. MRE
can be calculated as given by (6), where Eerror and Eout
denote the mean value of error and the mean value of correct
outputs, respectively. Notice that the optimum adder design
metric that achieves the minimum MRE is labeled.

MRE =
Eerror
Eout

× 100% (6)

In Fig. 6(a), the area budget is set to 35 LUTs. For all
frequency values, the overcloced RCA achieves no larger MRE
than the RCA with truncated operand word-lengths. This is
in accordance with the analysis in Section III-A. We also
notice that both CSA and OA cannot be implemented with
full precision due to area limitation, and this leads to large
truncation errors. Despite that the CSA with 4 stages is best
for some frequencies, in general the overclocked RCA is the
optimum design for most frequency requirements.

However if the area budget is released to 55 LUTs, OA
can be implemented with original word-length. Additionally
CSA can also be implemented with larger precision, but still
with truncation errors. Therefore as shown in Fig. 6(b), OA
serves as the optimum design with respect to a wide range of
frequency requirements. For higher frequencies, the MRE of
OA increases rapidly, and CSA with 4 stages outperforms for
higher frequencies. Similar to Fig. 6(a), the overclocked RCA
is the optimum design for even higher frequencies, because
in this case the CSA can only be implemented with small
precisions, and the multiplexer delay limits the benefits of
parallelism.

The results shown in Fig. 6 can be further extended by
testing with a variety of area constraints. In this case, we can
map the optimum design scenarios into the design space of dif-
ferent operating frequencies and area consumptions, as shown
in Fig. 7. In general this graph can be divided into several
regions. Firstly, if the frequency requirement is moderate whilst
the area budget is large enough to implement an OA in full
precision, it will be the optimum design. This is because long
carry chains are eliminated from OA such that it can maintain
full precision for a wide range of frequency values. Also this
is in accordance with the results in Fig. 6(b). Secondly, CSA
is a better design choice for high frequency requirements and
large area budget, because it is originally designed with high
speed operation. Besides, each stage of CSA is implemented
in the FPGA with fast carry logic [20], hence it runs even
faster than OA. Thirdly, for a tighter area budget only part of

450 500 550 600 650
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (MHz)

M
e

a
n

 R
e

la
ti
v
e

 E
rr

o
r

(%
)

RCA: Overclocking

RCA: Truncation

CSA 2−stage

CSA 4−stage

OA

RCA:
Overclocking

RCA:
Overclocking

CSA:
4−stage

(a) Available LUT=35.

450 500 550 600 650
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Frequency (MHz)

M
e

a
n

 R
e

la
ti
v
e

 E
rr

o
r

(%
)

RCA: Overclocking

RCA: Truncation

CSA 2−stage

CSA 4−stage

OA

CSA
4−stage

Online Adder

RCA
Overclocking

(b) Available LUT=55.

Fig. 6. Two examples of comparisons between different design scenarios and
adder implementations with limited area budget. RCA is evaluated with both
overclocking and truncation scenario, whereas CSA and OA are evaluated with
truncation scenario only. Design scenario with minimum error is labeled.

OA and CSA can be implemented, whereas RCA still keeps
original precision. In this situation, area becomes the limitation
factor. Both OA and CSA generate truncation errors, which
are greater than the overclocking error of RCA. Therefore, the
overclocked RCA is the optimum design option across almost
the entire frequency domain. Furthermore, the precision of
RCA is also limited under very stringent area constraints. This
causes truncation errors for every design option. Nevertheless,
RCA with either overclocking or truncation scenario equally
serves to be optimal, because it maintains more precision than
OA and CSA for a specific area budget.

B. Optimum Adder with Given Accuracy and Area Budgets

If the circuit is designed to operate as fast as possible with
minimum area, whilst a certain amount of imprecision can
be tolerated, the optimum adder design metric can also be
determined as illustrated in Fig. 8. In this set of experiments,
the error budget is evaluated in terms of MRE, which varies
from 10−6% to 10%. For a given MRE, the optimum adder

is selected with maximum operating frequency. In this case,
if multiple designs can operate with the same frequency,
the optimum design is then selected based on actual area
consumption within the area constraint.

Similar to the analysis in Section IV-A, for tight accuracy
requirement and large area budget, OA is the optimum design
choice because it keeps full precision while running at high
frequencies. If relaxing the accuracy requirement (e.g. 0.01%),
CSA gradually outperforms because its precision loss is less
than that of OA. Once again, if area budget is tightened, the
RCA becomes the best design choice, because the precision
of OA and CSA is largely limited. Furthermore, when the
accuracy requirement is released (e.g. over 1%), RCA can
operate with the fastest frequency across most area constraints.

V. CONCLUSION

In this paper, we have quantified design trade-offs for
three different adder structures: ripple carry adder, carry select
adder and online adder. Two design scenarios that can sacrifice
accuracy for better performance have been evaluated: one is
the conventional design scenario in which timing closure is
achieved by truncating precision, the other is the overclocking
scenario where timing violations are allowed to occur. By
combining both adder structures and design scenarios, we
have demonstrated experimentally the optimum design option
when considering a variety of frequency-accuracy-area trade-
offs. We have shown that applying the overclocking scenario
to RCA can be beneficial with limited area budget, whilst
applying the conventional scenario to online adder is an
optimal design choice with relaxed area requirements.

In the future we wish to provide similar evaluation to other
arithmetic primitives, such as multipliers. Other evaluation
metrics, such as energy consumption and throughput, can also
be included in the future.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Proc.
Int. Symp. Computer Architecture, 2011, pp. 365–376.

[2] G. A. Constantinides, N. Nicolici, and A. B. Kinsman, “Numerical data
representations for FPGA-based scientific computing,” IEEE Design
Test of Computers, vol. 28, no. 4, pp. 8–17, 2011.

[3] K. Shi, D. Boland, and G. A. Constantinides, “Accuracy-performance
tradeoffs on an fpga through overclocking,” in Proc. Int. Symp. Field-
Programmable Custom Computing Machines, vol. 0, 2013, pp. 29–36.

[4] M. D. Ercegovac, “On-line arithmetic: An overview,” in Proc. Annual
Technical Symp. Real time signal processing VII, 1984, pp. 86–93.

[5] S. I. Association, International technology roadmap for semiconductors
(ITRS), 2007.

[6] Z. M. Kedem, V. J. Mooney, K. K. Muntimadugu, and K. V. Palem, “An
approach to energy-error tradeoffs in approximate ripple carry adders,”
in Proc. Int. Symp. on Low Power Elec. and Design, 2011, pp. 211–216.

[7] J. M. Levine, E. Stott, G. A. Constantinides, and P. Y. K. Cheung,
“Online measurement of timing in circuits: For health monitoring and
dynamic voltage & frequency scaling,” 2012, pp. 109–116.

[8] T. Austin, D. Blaauw, T. Mudge, and K. Flautner, “Making typical
silicon matter with razor,” IEEE Trans. on Computer, vol. 37, no. 3,
pp. 57–65, 2004.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in Proc. Int. Conf.
Architectural Support for Programming Languages and Operating Sys-
tems, 2012, pp. 301–312.

10 20 30 40 50 60 70 80 90

450

500

550

600

650

of LUTs

F
re

q
u

e
n

c
y
 (

M
H

z
)

Online Adder

CSA: 4−stage

CSA: 2−stage

RCA: Overclocking

RCA: Overclocking or
Truncation

Not enough area for any structure

Fig. 7. Mapping of optimum design metric of adders, which achieves minimum error with respect to a variety of frequency and area constraints. The original
word-length of all adders is 32-bit. The results are obtained from Xilinx ISE 14.7.

10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

of LUTs

M
e
a
n
 R

e
la

ti
v
e
 E

rr
o
r

(%
)

CSA: 4−stage

CSA:2−stage

Online Adder

Too small area to
achieve error budget

RCA: Overclocking
or Truncation

RCA: Overclocking

Not enough area for any structure

Fig. 8. Mapping of optimum design metric of adders, which achieves highest frequency with respect to a variety of accuracy and area constraints. The original
word-length of all adders is 32-bit. The results are obtained from Xilinx ISE 14.7.

[10] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general low-
power computation,” in Proc. ACM SIGPLAN Notices, vol. 46, no. 6,
2011, pp. 164–174.

[11] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliability of
approximate and probabilistic adders,” IEEE Transactions on Comput-
ers, vol. 62, no. 9, pp. 1760–1771, Sept 2013.

[12] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in
Proc. of the Conf. on Design, Automation & Test in Europe, 2014,
pp. 95:1–95:4.

[13] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in Proc. Int. Conf. on
VLSI Design, 2011, pp. 346–351.

[14] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi, “A
high-speed multiplier using a redundant binary adder tree,” IEEE Jourl.
of Solid-State Circuits, vol. 22, no. 1, pp. 28–34, 1987.

[15] R. Galli and A. F. Tenca, “Design and evaluation of online arithmetic

for signal processing applications on FPGAs,” in Proc. SPIE Advanced
Signal Processing Algorithms, Architectures and Implementations, Aug
2001, pp. 134–144.

[16] M. Dimmler, A. Tisserand, U. Holmbeg, and R. Longchamp, “On-line
arithmetic for real-time control of microsystems,” IEEE/ASME Trans.
on Mechatronics, vol. 4, no. 2, pp. 213–217, Jun 1999.

[17] M. D. Ercegovac and T. Lang, Digital arithmetic. Morgan Kaufmann,
2003.

[18] T. Kim, W. Jao, and S. Tjiang, “Circuit optimization using carry-save-
adder cells,” IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 17, no. 10, pp. 974–984, 1998.

[19] A. Avizienis, “Signed-digit number representations for fast parallel
arithmetic,” IRE Trans. on Electronic Computers, vol. EC-10, no. 3,
pp. 389–400, 1961.

[20] Xilinx Inc., “Virtex-6 FPGA configurable logic block user guide.”

