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Abstract— The formal verification of datapath continues to prove a challenge to design and 
verification engineers. The majority of formal verification relies on algorithms operating at the bit 
level, whereas high level datapath optimizations are performed at a word level. This article 
shows how this disparity can be overcome by the application of recent research in the area of 
polynomial datapath. We step through a practical procedure, which can be applied directly to 
RTL code as a preprocessing step before formal verification tools are invoked. The procedure 
leads to orders of magnitude improvements in the execution time for commonly occurring 
problems in datapath verification. 

 
 
 

Index Terms— front-end verification best practices, datapath, functional verification, RTL. 
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I.   INTRODUCTION 
Datapath implementation at an RTL level requires a hardware engineer to work from a high level 
description, whether specification documentation or a system level model, in order to create an 
optimized hardware design. Invariably these optimizations will only be confirmed by dynamic 
simulation between a system model and the RTL design. This is in stark contrast to the optimizations 
performed by RTL synthesis tools, for which it is an industry standard requirement to use bit level 
formal equivalence tools to confirm functional equality of the RTL and resultant gate level netlist. It is, 
however, these high level optimizations that are invariably error prone and generally impossible to 
exhaustively simulate. As a trivial example consider the identity in equation (1).  

 

    ( )( )bababa +−≡− 22  (1) 
 

An industry standard bit level formal verification tool was unable to obtain a proof of this identity, 
where a and b are unsigned 16 bit integers, in any reasonable time frame. One could argue that 
reformulations like those in equation (1) should not fall under the remit of RTL formal verification, 
given that this identity holds over the real numbers, such identities can be proven by algebraic 
techniques. However, optimizations that rely on the finite bit widths of the arithmetic involved fall 
squarely under the remit of RTL formal verification. For example consider equations (2) and (3) 
 

( )1]0:2[ 22
2 −= xxy    (2) ( )12]0:2[ 2

3 −= xxy  (3) 

 
Where x is an unsigned integer of arbitrary bit width and 2y and 3y are both three bits in length. 

Surprisingly 2y and 3y  are functionally equivalent, regardless of the size of the input x ; this is due to 

the finite size of the output. To further motivate the discussion that follows, consider the functions 
found in equations (4) and (5): 
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Now equation (4) is a function of the bits of a and b , whereas equation (5) maintains the word nature 
of the inputs. As such, intuition would dictate that, to gain confidence in the correctness of the designs, 
fewer test vectors would be required for 4y than 5y . Putting this feeling on a firmer footing is the 

subject of this article.  
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In Section II we will expound the powerful and elegant theory of polynomial datapath equivalence as 
put forward by Shekhar et al. in [2]. These stunning results are based upon results in finite field 
algebra. Section III contains the authors’ contribution, which shows how the Shekhar et al. results can 
be used to prove formal equivalence of a range of datapath designs by developing a methodology that 
requires super usage of industry standard bit level equivalence tools. In doing so, we attain proofs that 
are leaps and bounds beyond current tool capacity.  
 
Our contributions are: 
 

• Observations on the range of datapath that is actually polynomial in nature, including various 
numbers formats and fundamental datapath operators. 

 
•  Algorithm to discover the polynomial nature of an arbitrary datapath design. 

 
• Waterfall formal verification methodology using the Shekhar et al. results and previously 

mentioned algorithm. 
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II. POLYNOMIAL DATAPATH 
A. Definition 
A datapath design is said to be polynomial if its inputs are unsigned integers and the function can be 

written as a polynomial with integer coefficients reduced modulo 2n, where n is the output bit-width. 

Obviously integer adders and multipliers are polynomial but it would appear that the vast majority of 

industry standard datapath would never fall under this category. However, quite a few very common 

operators and number formats are in fact polynomial in nature. For example, for n bit integer inputs a and 

b we have: 
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B. Frequency of Occurrence 
 

So, in fact, polynomial datapath is not so uncommon. Is all datapath polynomial in some way? Well 

consider the following function: 
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Design 6y is a comparison between a 2 bit and a 1 bit input. Equation (12) shows how this function 

can be written as a polynomial expression in a and b however it has rational coefficients, so it is not 
polynomial in its inputs. However equation (13) shows how 6y  is polynomial in the bits of its inputs. In 

fact all datapath can be written as a polynomial with respect to its inputs; however this will invariably 
require rational coefficients. Moreover all datapath is polynomial in its input bits. Why? Well all 
datapath can be expressed as a composition of NAND functions (due to universality of NANDs), but 
Equation (14) shows that these functions themselves are polynomial; so we conclude that all datapath 
is polynomial in its input bits. 
 

abbaNAND −= 1),(
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C. Formally Proving Equivalence of Polynomials 
 
We now tease out the striking results on the conditions for the formal equivalence of polynomial 
datapath, which is extracted from [2]. Let’s say we have two datapath designs whose formal 
equivalence we need to ascertain. That is, we need to prove, or find a counter example to (where 

ix are the inputs to the two functions): 
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Given that the two datapath designs can be expressed as polynomials, we are interested in knowing if 

the polynomial 21 ff − returns zero modulo n2

 

for all possible inputs. If so, we call 21 ff −

 

a 
vanishing polynomial. So what do these vanishing polynomials look like? How do we know if the 
difference between two designs can be written as a polynomial that vanishes? 
 

D. Vanishing Polynomials 
 
In an attempt to find vanishing polynomials, consider the fact that the product of consecutive numbers 
are always divisible by 2, hence: 
 

)18(2mod0)1( Ζ∈∀=− xxx

 

 
Similarly looking at the products of consecutive numbers gives rise to the following observations:  
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This can be generalized to: 
 

)22(2mod0)1)2()...(2)(1( Ζ∈∀=+−−− xSFxxxx nn  
 
Where SF(2n) is the least number k such that the product of k consecutive integers is always divisible 
by 2n, this is the Smarandache function. This can be computed succinctly by using the Hamming 
weight function, denoted here as Hamm(k), which counts the number of ones in the binary 
representation of k.  
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Based upon these observations we can attempt to formulate the most general vanishing polynomial in 
the case when n=3: 



DAC.COM KNOWLEDGE CENTER ARTICLE 
www.dac.com  

Page 7 of 14 

 

 

 

)25(2mod0

8
8

)1(4
)2)(1(4

)3)(2)(1()(

3 Ζ∈∀=

+
+

−+
−−+

−−−

x

D
Cx
xBx

xxAx
xxxxxg

 

 
Where g(x) is an arbitrary polynomial and A, B, C & D are arbitrary integers. In fact this is the most 
general vanishing polynomial modulo 23, [1]. How can we tell if a given polynomial vanishes? Well 
that would mean we could rewrite it in the form of Equation (25), i.e.: 
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All we need do is solve for A, B, C & D. We can simply substitute values for x: 
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We are expecting f1 and f2 to be functionally identical so we would expect these functions to match for 
x=0,1,2,3. If they do match for x=0,1,2,3 then solving the set of equations in Equation (27) would give 
rise to A=B=C=D=0  and we would then conclude that f1(x)-f2(x) does indeed vanish for all x. This is a 
very surprising result, to reiterate: 
 

)28(]3,2,1,0[2mod)()(2mod)()( 3
21

3
21 ∈=⇔Ζ∈∀= xxfxfxxfxf  

 
This formalizes the notion we had in the introduction, we need only check the first few values for x, 
after which the polynomials will always be identical. Now we have a way of finding out the least 
number of inputs we need to check. We can generalize Equation (28) to: 
 

( ) )29(]12,...,2,1,0[2mod)()(2mod)()( 2121 −∈=⇔Ζ∈∀= nnn SFxxfxfxxfxf
 
This result can be further generalized to multivariate polynomials, see [2] for details. 
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III. POLYNOMIAL DATAPATH FORMAL VERIFICATION METHODOLOGY 
 
A. Introduction 
From Section II we saw that polynomial datapath covers a significant amount of datapath designs, 
moreover we saw that formally proving two polynomial designs as being equivalent only requires 
checking a reduced set of inputs. How can we exploit these elegant results from Shekhar et al.? The 
contribution of this article is the development of a methodology that shows how the results from 
Section 2 and existing formal equivalence checking tools can be combined to provide significant 
orders of magnitude improvement in verification runtimes. The remainder of this section provides the 
details of this novel polynomial datapath formal verification methodology.  
 
The game plan is to first establish in which way two designs are polynomial, then perform a traditional 
formal verification but with reduced bit widths in line with Equation (29). It is worth noting that we do 
not need to form the polynomial description of the designs in question, only establish the polynomial 
nature of the inputs, this is in contrast to the work in [3].  

 

B. Data-Flow Graph 
We can assess the polynomial nature of a datapath design by first forming an augmented data-flow 
graph (DFG). Take for example the design described in Equation (30): 
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We create a directed graph whose vertices are the inputs, outputs, and operators of the design in 
question, Figure 1 shows the resultant DFG for the design from Equation (30). The edges of the 
directed graph correspond to the interconnecting signals of the design, connecting inputs, outputs, 
and operators as necessary, with the appropriate direction. 
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 Figure 1: Example Data-Flow Graph. 
 
To work out the polynomial nature of this design we first recall the polynomial behaviour of each 
operator node, e.g.  

 
Figure 2: Polynomial Behaviour of Operators. 

 
Where P/N labels polynomial/non polynomial respectively. Multiplication and addition are polynomial 
in both inputs. Left shift is polynomial in the shifted value but non polynomial in the shift value. Using 
the polynomial nature of each operator we can build up the polynomial nature of the entire design. 
The steps required in establishing the polynomial nature of the inputs is found in Algorithm 1: 
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By applying this to Figure 1 we get Figure 3. 
 
 

 
 
Figure 3: Augmented Data-Flow Graph. 

 
In this case we would say that this particular design is polynomial only with respect to inputs a, b, and 
d. Hence we have a method of determining the polynomial nature of each input.  

 

a b c d 

+ 

- << 

* 

+ 

y 

1 

P 

P 

P 

P 

P 

P 

P 
P 

P 

N 

N 

P P N P 

Inputs: Data Flow Graph and pre calculated operator polynomial behaviour 
Output: Labelled Data Flow Graph and Inputs 

 
Step 1: Label the outputs as ‘P’ 
 
Step 2: For every node for which all outputs are labelled then 
 If all outputs are labelled ‘P’ 
 Then label the inputs as per the known operator’s polynomial behaviour 
 Else label all the inputs as ‘N’ 
 
Step 3: Repeat Step 2 until all edges are labelled 
 
Step 4: If all edges from an input are labelled ‘P’  
 Then label the input ‘P’ 
 Else label the input ‘N’ 
 

Algorithm 1 
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C. The Waterfall Verification 
    
For the verification method to be viable the datapath must be extractable into a DFG with unsigned 
inputs, this means that there must be no bit slicing of the inputs, i.e. unbroken inputs. Moreover the 
DFG does not contain internal bit widths; hence these must not affect functionality. So the first step in 
a waterfall verification would be between an original design A, and a modified design A’ which has 
unsigned and unbroken inputs and internal bit widths which are the same as the output width. So, for 
example in the case of Equation (30) we would derive a design based upon Equation (31): 
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  (31)  

 
Now this design has a 32 bit output and is polynomial in the 16 bit inputs a, b, and d and in all the 
inputs bits of input c. So according to Equation (29) we need only check the first SF(232)=34 values on 
each of the inputs in which the design is polynomial in. So we may in fact restrict the sizes of a, b,  
and d to being 6 bits in length. So we make the design A” as described in Equation (32): 
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(32) 

 
Figure 4 illustrates the complete verification process when formally verifying designs A against B.  

 

 
Figure 4: Formal Verifications Required. 
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The precise steps of the verification methodology are: 
 

1. The first step is to produce designs A’ and B’ from which a DFG can be created as described in 
Section III. C. The resultant DFG has unsigned inputs, all internal signals are of bit width n and no 
inputs are bit sliced during the DFG. If a signal is sliced in two during the design, then two inputs 
should be created. If an input is in floating point format, then it will need to be split into sign, exponent 
and mantissa. Sign magnitude inputs will need their most significant bit separated into a new input. 
Twos complement signed numbers will similarly need their most significant bit separated into a new 
input. The result should be designs A’ and B’ whose inputs are unsigned, internal bit widths all equal 
the largest output bit width and inputs are used in their entirety without being bit sliced. If the inputs to 
A’ and B’ now differ, the fewest number of new inputs are created such that no bit splicing occurs in 
the two designs. A formal verification using the standard tools will then be performed between A and 
A’ as well as between B and B’. If either of these fail then the method is not applicable to the given 
verification.  
  
2. Secondly create a DFG from A’ and B’, apply Algorithm 1 to each DFG. The inputs which have 
been labeled as ‘P’ on both DFGs are then defined as strictly polynomial.  
  
3. For each strictly polynomial input with width wj compute where n is the maximum output width: 
 

   

( )( )( )( )n
jj SFceilw 2log,min 2=λ  

  
4. Create A” and B” which are identical to A’ and B’ except for the fact that the strictly polynomial 
inputs are reduced in size to their corresponding width jλ . If the verification between A” and B” 

succeeds then the designs A and B are formally equivalent, otherwise they are not. 
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IV. WORKED EXAMPLE AND RESULTS 
 

To complete the example introduced in Equation (30) consider designs A and B: 
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Following Section III. C. we derive A’ and B’: 
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Design B’
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The DFG of A’ can be found in Figure 1. By applying Algorithm 1 to the DFG we found the strictly 
polynomial inputs to be a, b and d. The output bit width in this case is 32 so we need to compute 
SF(232): 

( ) ( ) 34)(32:min232 =−≤= kHammkkSF

 

( )( )( )( ) 62log,16min 32
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Now we can derive the designs with reduced bit width, A” and B”: 

Design A” 
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Formally verifying A” against B” is a much simpler verification than A against B. SF(2n) is of order n, 
thus reducing exponential complexity with linear. An industry standard formal equivalence tool was 
used to attempt the waterfall proof as well as the original A versus B formal verification, the results 
can be found in Table 1: 
 

Table 1: Waterfall Formal Verification Runtimes. 
 
 
 
 
 

 

Reference Implementation Formal Verification Runtime (s) 
A B Unfinished after 24 hrs 
A A’ 0.80 
A” B” 123.24 
B’ B 37.72 
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V. CONCLUSION 
 

This article has shown how recent research into polynomial datapath can be used to formally verify 
word level datapath optimizations by performing a waterfall verification, which is currently infeasible 
using industry standard formal equivalence tools. Future work would include automating this 
methodology on extracted polynomial datapath elements from the two designs.    
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