
DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

This document has been submitted to, and reviewed and posted by, the editors of DAC.com. Please recycle if printed.

Leap in the Formal Verification of Datapath

Theo A. Drane1 and George A. Constantinides2
1 Imagination Technologies Ltd., Kings Langley, Hertfordshire, UK
2 Department of Electrical and Electronic Engineering, Imperial College London, UK

Notice of Copyright

This material is protected under the copyright laws of the U.S.
and other countries and any uses not in conformity with the
copyright laws are prohibited. Copyright for this document is
held by the creator — authors and sponsoring organizations —
of the material, all rights reserved.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 2 of 14

WHITE PAPER__

Leap in the Formal Verification of Datapath

Theo A. Drane1 and George A. Constantinides2
1 Imagination Technologies Ltd., Kings Langley, Hertfordshire, UK
2 Department of Electrical and Electronic Engineering, Imperial College London, London, UK

Abstract— The formal verification of datapath continues to prove a challenge to design and
verification engineers. The majority of formal verification relies on algorithms operating at the bit
level, whereas high level datapath optimizations are performed at a word level. This article
shows how this disparity can be overcome by the application of recent research in the area of
polynomial datapath. We step through a practical procedure, which can be applied directly to
RTL code as a preprocessing step before formal verification tools are invoked. The procedure
leads to orders of magnitude improvements in the execution time for commonly occurring
problems in datapath verification.

Index Terms— front-end verification best practices, datapath, functional verification, RTL.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 3 of 14

I. INTRODUCTION
Datapath implementation at an RTL level requires a hardware engineer to work from a high level
description, whether specification documentation or a system level model, in order to create an
optimized hardware design. Invariably these optimizations will only be confirmed by dynamic
simulation between a system model and the RTL design. This is in stark contrast to the optimizations
performed by RTL synthesis tools, for which it is an industry standard requirement to use bit level
formal equivalence tools to confirm functional equality of the RTL and resultant gate level netlist. It is,
however, these high level optimizations that are invariably error prone and generally impossible to
exhaustively simulate. As a trivial example consider the identity in equation (1).

 ()()bababa +−≡− 22 (1)

An industry standard bit level formal verification tool was unable to obtain a proof of this identity,
where a and b are unsigned 16 bit integers, in any reasonable time frame. One could argue that
reformulations like those in equation (1) should not fall under the remit of RTL formal verification,
given that this identity holds over the real numbers, such identities can be proven by algebraic
techniques. However, optimizations that rely on the finite bit widths of the arithmetic involved fall
squarely under the remit of RTL formal verification. For example consider equations (2) and (3)

()1]0:2[22
2 −= xxy (2) ()12]0:2[2

3 −= xxy (3)

Where x is an unsigned integer of arbitrary bit width and 2y and 3y are both three bits in length.

Surprisingly 2y and 3y are functionally equivalent, regardless of the size of the input x ; this is due to

the finite size of the output. To further motivate the discussion that follows, consider the functions
found in equations (4) and (5):

]0[]1[]2[
:]3[]4[]5[?]0[
:]6[]7[]8[?]1[

4

aaa
aaab
aaab

y
++
++
++

= (4)]0:1[]0:8[5 bay <<= (5)

Now equation (4) is a function of the bits of a and b , whereas equation (5) maintains the word nature
of the inputs. As such, intuition would dictate that, to gain confidence in the correctness of the designs,
fewer test vectors would be required for 4y than 5y . Putting this feeling on a firmer footing is the

subject of this article.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 4 of 14

In Section II we will expound the powerful and elegant theory of polynomial datapath equivalence as
put forward by Shekhar et al. in [2]. These stunning results are based upon results in finite field
algebra. Section III contains the authors’ contribution, which shows how the Shekhar et al. results can
be used to prove formal equivalence of a range of datapath designs by developing a methodology that
requires super usage of industry standard bit level equivalence tools. In doing so, we attain proofs that
are leaps and bounds beyond current tool capacity.

Our contributions are:

• Observations on the range of datapath that is actually polynomial in nature, including various
numbers formats and fundamental datapath operators.

• Algorithm to discover the polynomial nature of an arbitrary datapath design.

• Waterfall formal verification methodology using the Shekhar et al. results and previously

mentioned algorithm.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 5 of 14

II. POLYNOMIAL DATAPATH
A. Definition
A datapath design is said to be polynomial if its inputs are unsigned integers and the function can be

written as a polynomial with integer coefficients reduced modulo 2n, where n is the output bit-width.

Obviously integer adders and multipliers are polynomial but it would appear that the vast majority of

industry standard datapath would never fall under this category. However, quite a few very common

operators and number formats are in fact polynomial in nature. For example, for n bit integer inputs a and

b we have:

 Signed Number a]0:2[]1[2 1 −+−− − nanan

)6(

 Sign Magnitude Number a ()]0:2[]1[21]0:2[)1(]1[−−−=−− − nananana

)7(

 Muxing ()bssabas −+= 1:?

)8(

Inversion aa n −−= 12

)9(

 Left Shift ()() ()()1]0[1]1[3...1]1[12
12 +++−−=<<

−

bbnbaba
n

)10(

B. Frequency of Occurrence

So, in fact, polynomial datapath is not so uncommon. Is all datapath polynomial in some way? Well

consider the following function:

())13(2mod]1[]0[]0[]0[]1[]0[]1[

)12(2mod)1)(3)(2(
2
1)27)(1(

6
1

)11(0:1?])0:0[]0:1[(]0:0[6

baabaaaaa

baaaaaa

bay

+−−+=

⎟
⎠
⎞

⎜
⎝
⎛ −−−+−−=

>=

Design 6y is a comparison between a 2 bit and a 1 bit input. Equation (12) shows how this function

can be written as a polynomial expression in a and b however it has rational coefficients, so it is not
polynomial in its inputs. However equation (13) shows how 6y is polynomial in the bits of its inputs. In

fact all datapath can be written as a polynomial with respect to its inputs; however this will invariably
require rational coefficients. Moreover all datapath is polynomial in its input bits. Why? Well all
datapath can be expressed as a composition of NAND functions (due to universality of NANDs), but
Equation (14) shows that these functions themselves are polynomial; so we conclude that all datapath
is polynomial in its input bits.

abbaNAND −= 1),(

)14(

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 6 of 14

C. Formally Proving Equivalence of Polynomials

We now tease out the striking results on the conditions for the formal equivalence of polynomial
datapath, which is extracted from [2]. Let’s say we have two datapath designs whose formal
equivalence we need to ascertain. That is, we need to prove, or find a counter example to (where

ix are the inputs to the two functions):

)17(2mod0
)16(0]0:1[]0:1[
)15(]0:1[]0:1[

21

21

21

i
n

i

i

xff
xnfnf
xnfnf

∀=−
∀=−−−
∀−≡−

Given that the two datapath designs can be expressed as polynomials, we are interested in knowing if

the polynomial 21 ff − returns zero modulo n2

for all possible inputs. If so, we call 21 ff −

a
vanishing polynomial. So what do these vanishing polynomials look like? How do we know if the
difference between two designs can be written as a polynomial that vanishes?

D. Vanishing Polynomials

In an attempt to find vanishing polynomials, consider the fact that the product of consecutive numbers
are always divisible by 2, hence:

)18(2mod0)1(Ζ∈∀=− xxx

Similarly looking at the products of consecutive numbers gives rise to the following observations:

)21(2mod0)5)(4)(3)(2)(1(
)20(2mod0)3)(2)(1(
)19(2mod0)2)(1(

4

3

Ζ∈∀=−−−−−
Ζ∈∀=−−−
Ζ∈∀=−−

xxxxxxx
xxxxx
xxxx

This can be generalized to:

)22(2mod0)1)2()...(2)(1(Ζ∈∀=+−−− xSFxxxx nn

Where SF(2n) is the least number k such that the product of k consecutive integers is always divisible
by 2n, this is the Smarandache function. This can be computed succinctly by using the Hamming
weight function, denoted here as Hamm(k), which counts the number of ones in the binary
representation of k.

() ()
())24()(:min

)23(!|2:min2
kHammknk

kkSF nn

−≤=
=

Based upon these observations we can attempt to formulate the most general vanishing polynomial in
the case when n=3:

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 7 of 14

)25(2mod0

8
8

)1(4
)2)(1(4

)3)(2)(1()(

3 Ζ∈∀=

+
+

−+
−−+

−−−

x

D
Cx
xBx

xxAx
xxxxxg

Where g(x) is an arbitrary polynomial and A, B, C & D are arbitrary integers. In fact this is the most
general vanishing polynomial modulo 23, [1]. How can we tell if a given polynomial vanishes? Well
that would mean we could rewrite it in the form of Equation (25), i.e.:

)26(

8
8

)1(4
)2)(1(4

)3)(2)(1()(

)()(21

D
Cx
xBx

xxAx
xxxxxg

xfxf

+
+

−+
−−+

−−−

=−

All we need do is solve for A, B, C & D. We can simply substitute values for x:

)27(

8242424)3()3(
8168)2()2(

88)1()1(
8)0()0(

21

21

21

21

DCBAff
DCBff

DCff
Dff

+++=−
++=−

+=−
=−

We are expecting f1 and f2 to be functionally identical so we would expect these functions to match for
x=0,1,2,3. If they do match for x=0,1,2,3 then solving the set of equations in Equation (27) would give
rise to A=B=C=D=0 and we would then conclude that f1(x)-f2(x) does indeed vanish for all x. This is a
very surprising result, to reiterate:

)28(]3,2,1,0[2mod)()(2mod)()(3
21

3
21 ∈=⇔Ζ∈∀= xxfxfxxfxf

This formalizes the notion we had in the introduction, we need only check the first few values for x,
after which the polynomials will always be identical. Now we have a way of finding out the least
number of inputs we need to check. We can generalize Equation (28) to:

())29(]12,...,2,1,0[2mod)()(2mod)()(2121 −∈=⇔Ζ∈∀= nnn SFxxfxfxxfxf

This result can be further generalized to multivariate polynomials, see [2] for details.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 8 of 14

III. POLYNOMIAL DATAPATH FORMAL VERIFICATION METHODOLOGY

A. Introduction
From Section II we saw that polynomial datapath covers a significant amount of datapath designs,
moreover we saw that formally proving two polynomial designs as being equivalent only requires
checking a reduced set of inputs. How can we exploit these elegant results from Shekhar et al.? The
contribution of this article is the development of a methodology that shows how the results from
Section 2 and existing formal equivalence checking tools can be combined to provide significant
orders of magnitude improvement in verification runtimes. The remainder of this section provides the
details of this novel polynomial datapath formal verification methodology.

The game plan is to first establish in which way two designs are polynomial, then perform a traditional
formal verification but with reduced bit widths in line with Equation (29). It is worth noting that we do
not need to form the polynomial description of the designs in question, only establish the polynomial
nature of the inputs, this is in contrast to the work in [3].

B. Data-Flow Graph
We can assess the polynomial nature of a datapath design by first forming an augmented data-flow
graph (DFG). Take for example the design described in Equation (30):

23]0:31[
1*]0:15[]0:31[3

0]0:15[]0:31[2
0]0:15[]0:31[1
1]0:15[]0:16[0

tty
tat

tdt
tbt

ct

+=
=

<<=
−=
+=

 (30)

We create a directed graph whose vertices are the inputs, outputs, and operators of the design in
question, Figure 1 shows the resultant DFG for the design from Equation (30). The edges of the
directed graph correspond to the interconnecting signals of the design, connecting inputs, outputs,
and operators as necessary, with the appropriate direction.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 9 of 14

 Figure 1: Example Data-Flow Graph.

To work out the polynomial nature of this design we first recall the polynomial behaviour of each
operator node, e.g.

Figure 2: Polynomial Behaviour of Operators.

Where P/N labels polynomial/non polynomial respectively. Multiplication and addition are polynomial
in both inputs. Left shift is polynomial in the shifted value but non polynomial in the shift value. Using
the polynomial nature of each operator we can build up the polynomial nature of the entire design.
The steps required in establishing the polynomial nature of the inputs is found in Algorithm 1:

P P P N
+ <<

P P
*

a b c d

+

- <<

*

+

y

1

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 10 of 14

By applying this to Figure 1 we get Figure 3.

Figure 3: Augmented Data-Flow Graph.

In this case we would say that this particular design is polynomial only with respect to inputs a, b, and
d. Hence we have a method of determining the polynomial nature of each input.

a b c d

+

- <<

*

+

y

1

P

P

P

P

P

P

P
P

P

N

N

P P N P

Inputs: Data Flow Graph and pre calculated operator polynomial behaviour
Output: Labelled Data Flow Graph and Inputs

Step 1: Label the outputs as ‘P’

Step 2: For every node for which all outputs are labelled then
 If all outputs are labelled ‘P’
 Then label the inputs as per the known operator’s polynomial behaviour
 Else label all the inputs as ‘N’

Step 3: Repeat Step 2 until all edges are labelled

Step 4: If all edges from an input are labelled ‘P’
 Then label the input ‘P’
 Else label the input ‘N’

Algorithm 1

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 11 of 14

C. The Waterfall Verification

For the verification method to be viable the datapath must be extractable into a DFG with unsigned
inputs, this means that there must be no bit slicing of the inputs, i.e. unbroken inputs. Moreover the
DFG does not contain internal bit widths; hence these must not affect functionality. So the first step in
a waterfall verification would be between an original design A, and a modified design A’ which has
unsigned and unbroken inputs and internal bit widths which are the same as the output width. So, for
example in the case of Equation (30) we would derive a design based upon Equation (31):

23]0:31[
1*]0:15[]0:31[3

0]0:15[]0:31[2
0]0:15[]0:31[1
1]0:15[]0:31[0

tty
tat

tdt
tbt

ct

+=
=

<<=
−=
+=

 (31)

Now this design has a 32 bit output and is polynomial in the 16 bit inputs a, b, and d and in all the
inputs bits of input c. So according to Equation (29) we need only check the first SF(232)=34 values on
each of the inputs in which the design is polynomial in. So we may in fact restrict the sizes of a, b,
and d to being 6 bits in length. So we make the design A” as described in Equation (32):

23]0:31[
1*]0:5[]0:31[3

0]0:5[]0:31[2
0]0:5[]0:31[1
1]0:15[]0:31[0

tty
tat

tdt
tbt

ct

+=
=

<<=
−=

+=

(32)

Figure 4 illustrates the complete verification process when formally verifying designs A against B.

Figure 4: Formal Verifications Required.

A A’ A” B” B’ B

Original
design

Original
design

Unsigned
Unbroken

Inputs,
Maxed
internal
signal
widths

Reduced
polynomial

input
widths

Reduced
polynomial

input
widths

Verification
step Final

verification
step

Verification
step

Unsigned
Unbroken

Inputs,
Maxed
internal
signal
widths

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 12 of 14

The precise steps of the verification methodology are:

1. The first step is to produce designs A’ and B’ from which a DFG can be created as described in
Section III. C. The resultant DFG has unsigned inputs, all internal signals are of bit width n and no
inputs are bit sliced during the DFG. If a signal is sliced in two during the design, then two inputs
should be created. If an input is in floating point format, then it will need to be split into sign, exponent
and mantissa. Sign magnitude inputs will need their most significant bit separated into a new input.
Twos complement signed numbers will similarly need their most significant bit separated into a new
input. The result should be designs A’ and B’ whose inputs are unsigned, internal bit widths all equal
the largest output bit width and inputs are used in their entirety without being bit sliced. If the inputs to
A’ and B’ now differ, the fewest number of new inputs are created such that no bit splicing occurs in
the two designs. A formal verification using the standard tools will then be performed between A and
A’ as well as between B and B’. If either of these fail then the method is not applicable to the given
verification.

2. Secondly create a DFG from A’ and B’, apply Algorithm 1 to each DFG. The inputs which have
been labeled as ‘P’ on both DFGs are then defined as strictly polynomial.

3. For each strictly polynomial input with width wj compute where n is the maximum output width:

()()()()n
jj SFceilw 2log,min 2=λ

4. Create A” and B” which are identical to A’ and B’ except for the fact that the strictly polynomial
inputs are reduced in size to their corresponding width jλ . If the verification between A” and B”

succeeds then the designs A and B are formally equivalent, otherwise they are not.

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 13 of 14

IV. WORKED EXAMPLE AND RESULTS

To complete the example introduced in Equation (30) consider designs A and B:

Design A

23]0:31[
1*]0:15[]0:31[3

0]0:15[]0:31[2
0]0:15[]0:31[1
1]0:15[]0:16[0

tty
tat

tdt
tbt

ct

+=
=

<<=
−=
+=

Design B

1*232]0:31[
0*]0:15[]0:31[3

]0:15[*]0:15[]0:31[2
]0:15[]0:15[]0:31[1

1]0:15[]0:16[0

ttty
tat
bat

cdt
ct

+−=
=
=

<<=
+=

Following Section III. C. we derive A’ and B’:

Design A’

23]0:31[
1*]0:31[3

0]0:31[2
0]0:31[1
1]0:31[0

tty
tat

tdt
tbt

ct

+=
=

<<=
−=
+=

Design B’

1*232]0:31[

0*]0:31[3
*]0:31[2

]0:31[1
1]0:31[0

ttty
tat
bat

cdt
ct

+−=
=
=

<<=
+=

The DFG of A’ can be found in Figure 1. By applying Algorithm 1 to the DFG we found the strictly
polynomial inputs to be a, b and d. The output bit width in this case is 32 so we need to compute
SF(232):

() () 34)(32:min232 =−≤= kHammkkSF

()()()() 62log,16min 32
2 == SFceiljλ

Now we can derive the designs with reduced bit width, A” and B”:

Design A”

23]0:31[
1*]0:5[]0:31[3

0]0:5[]0:31[2
0]0:5[]0:31[1
1]0:15[]0:31[0

tty
tat

tdt
tbt

ct

+=
=

<<=
−=

+=

Design B”

1*232]0:31[
0*]0:5[]0:31[3

]0:5[*]0:5[]0:31[2
]0:15[]0:5[]0:31[1

1]0:15[]0:31[0

ttty
tat
bat

cdt
ct

+−=
=
=

<<=
+=

Formally verifying A” against B” is a much simpler verification than A against B. SF(2n) is of order n,
thus reducing exponential complexity with linear. An industry standard formal equivalence tool was
used to attempt the waterfall proof as well as the original A versus B formal verification, the results
can be found in Table 1:

Table 1: Waterfall Formal Verification Runtimes.

Reference Implementation Formal Verification Runtime (s)
A B Unfinished after 24 hrs
A A’ 0.80
A” B” 123.24
B’ B 37.72

DAC.COM KNOWLEDGE CENTER ARTICLE
www.dac.com

Page 14 of 14

V. CONCLUSION

This article has shown how recent research into polynomial datapath can be used to formally verify
word level datapath optimizations by performing a waterfall verification, which is currently infeasible
using industry standard formal equivalence tools. Future work would include automating this
methodology on extracted polynomial datapath elements from the two designs.

REFERENCES
[1] D. Singmaster. On polynomial functions (mod m). Journal Number Theory, vol. 6, pages 345–352, 1974.
[2] N. Shekhar, P. Kalla, M. B. Meredith, and F. Enescu. Simulation bounds for equivalence verification of polynomial

datapaths using finite ring algebra. IEEE Transactions on VLSI Systems, vol. 16, no. 4, pages 376-387, 2008.
[3] D. Li, Z. Fan and X. Yang. Abstraction of polynomial functions from arithmetic transform for fixed-size arithmetic

datapath. 2nd International Conference on Information Engineering and Computer Science (ICIECS), pages 1-4,
2010.

