Lecture 4

Sequential Circuits

Konstantinos Masselos
Department of Electrical & Electronic Engineering
Imperial College London

URL: http://cas.ee.ic.ac.uk/~kostas
E-mail: k.masselos@imperial.ac.uk
Based on slides/material by…

- P. Cheung http://www.ee.ic.ac.uk/pcheung/teaching/ee4_asic/index.html
- J. Rabaey http://bwrc.eecs.berkeley.edu/Classes/IcBook/instructors.html
- D. Harris http://www.cmosvlsi.com/coursematerials.html
 Weste and Harris, “CMOS VLSI Design: A Circuits and Systems Perspective”, Addison Wesley
Recommended Reading

- Weste and Harris, “CMOS VLSI Design: A Circuits and Systems Perspective”: Chapter 1 (1.4.9), Chapter 7 (7.3.1 – 7.3.5)
Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
Combinational vs. Sequential Logic

(a) Combinational

Output = $f(In)$

(b) Sequential

Output = $f(In, \text{Previous In})$
Sequential Logic

2 storage mechanisms
• positive feedback
• charge-based
Positive Feedback: Bi-Stability

\[V_{i1} = V_{i2} = V_{o1} = V_{o2} \]

Diagram showing the voltage relationships:

- \(V_{i1} \) and \(V_{i2} \) are inputs.
- \(V_{o1} \) and \(V_{o2} \) are outputs.
- The circuit exhibits bistable behavior with feedback loops.

Points A, B, and C on the voltage curves illustrate the state transitions of the system.
Meta-Stability

- Gain should be larger than 1 in the transition region
Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
D Latch

- When CLK = 1, latch is transparent
 - D flows through to Q like a buffer
- When CLK = 0, the latch is opaque
 - Q holds its old value independent of D
- *transparent latch* or *level-sensitive latch*
D Latch Design

- Multiplexer chooses D or old Q

![D Latch Diagram]
D Latch Operation

CLK = 1

CLK = 0

CLK

D

Q
Latch Design

- Pass Transistor Latch
- Pros
 - Tiny
 - Low clock load
- Cons
 - V_t drop
 - nonrestoring
 - backdriving
 - output noise sensitivity
 - dynamic
 - diffusion input

Used in 1970’s
Latch Design

- Transmission gate
 - No V_t drop
 - Requires inverted clock

\[
\begin{align*}
\text{D} & \quad \text{Q} \\
\phi & \quad \phi
\end{align*}
\]
Latch Design

- Inverting buffer
 + Restoring
 + No backdriving
 + Fixes either
 - Output noise sensitivity
 - Or diffusion input
 - Inverted output
Latch Design

- Tristate feedback
 - Static
 - Backdriving risk

- Static latches are now essential
Latch Design

- Buffered input
 - Fixes diffusion input
 - Noninverting
Latch Design

- Buffered output
 - No backdriving

- Widely used in standard cells
 - Very robust (most important)
 - Rather large
 - Rather slow
 - High clock loading
Latch Design

- Datapath latch
 - Smaller, faster
 - Unbuffered input
Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
D Flip-flop

- When CLK rises, D is copied to Q
- At all other times, Q holds its value
- *positive edge-triggered flip-flop, master-slave flip-flop*
D Flip-flop Design

- Built from master and slave D latches
D Flip-flop Operation

CLK = 0

CLK = 1

CLK
Flip-Flop: Timing Definitions

- t_{setup}
- t_{hold}
- t_{pFF}

Data Stable regions:
- In
- Out

Flip-Flop: Timing Definitions

- ϕ
- t

Sequential Circuits
Introduction to Digital Integrated Circuit Design
Lecture 4 - 24
Maximum Clock Frequency

\[t_{p,\text{setup}} + t_{p,\text{comb}} + t_{\text{FF}} < T \]
Flip-Flop Design

- Flip-flop is built as pair of back-to-back latches.
Enable

- Enable: ignore clock when $en = 0$
 - Mux: increase latch D-Q delay
 - Clock Gating: increase en setup time, skew
Reset

- Force output low when reset asserted
- Synchronous vs. asynchronous
Set / Reset

- Set forces output high when enabled
- Flip-flop with asynchronous set and reset
SR-Flip Flop

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>\overline{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>\overline{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
JK- Flip Flop

(a) Circuit diagram of a JK Flip Flop

(b) Truth table for a JK Flip Flop

\[
\begin{array}{ccc}
J_n & K_n & Q_{n+1} \\
0 & 0 & Q_n \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & \overline{Q}_n \\
\end{array}
\]
Other Flip-Flops

- **Toggle Flip-Flop**

- **Delay Flip-Flop**
Master-Slave Flip-Flop

![Master-Slave Flip-Flop Diagram]
Edge Triggered Flip-Flop
Race Condition

- Back-to-back flops can malfunction from clock skew
 - Second flip-flop fires late
 - Sees first flip-flop change and captures its result
 - Called *hold-time failure* or *race condition*

![Diagram of race condition](image-url)
Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
 - As long as nonoverlap exceeds clock skew
- Can be used for safe design
 - Industry manages skew more carefully instead
CMOS Clocked SR-FlipFlop
Flip-Flop: Transistor Sizing
6 Transistor CMOS SR-Flip Flop
Charge-Based Storage

(a) Schematic diagram

(b) Non-overlapping clocks

Pseudo-static Latch
Master-Slave Flip-Flop

Overlapping Clocks Can Cause
- Race Conditions
- Undefined Signals
2 phase non-overlapping clocks
2-phase dynamic flip-flop
Flip-flop insensitive to clock overlap

C2MOS LATCH
C²MOS avoids Race Conditions

(a) (1-1) overlap

(b) (0-0) overlap
Pipelining

![Diagram showing non-pipelined and pipelined versions of a digital integrated circuit design.](image)

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder</th>
<th>Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_1 + b_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>$a_2 + b_2$</td>
<td>$</td>
<td>a_1 + b_1</td>
</tr>
<tr>
<td>3</td>
<td>$a_3 + b_3$</td>
<td>$</td>
<td>a_2 + b_2</td>
</tr>
<tr>
<td>4</td>
<td>$a_4 + b_4$</td>
<td>$</td>
<td>a_3 + b_3</td>
</tr>
<tr>
<td>5</td>
<td>$a_5 + b_5$</td>
<td>$</td>
<td>a_4 + b_4</td>
</tr>
</tbody>
</table>
Pipelined Logic using C²MOS

What are the constraints on F and G?

NORA CMOS
NORA CMOS Modules

(a) \(\phi \)-module

(b) \(\bar{\phi} \)-module

Combinational logic

Latch
Doubled C^2MOS Latches

Doubled n-C^2MOS latch
TSPC - True Single Phase Clock Logic

Including logic into the latch

Inserting logic between latches
Master-Slave Flip-flops

(a) Positive edge-triggered D flip-flop

(b) Negative edge-triggered D flip-flop

(c) Positive edge-triggered D flip-flop using split-output latches
Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
Schmitt Trigger

- VTC with hysteresis
- Restores signal slopes
Noise Suppression using Schmitt Trigger

- V_{in}
- V_{M+}
- V_{M-}
- t_0
- t
- V_{out}
- $t_0 + t_p$
- t
CMOS Schmitt Trigger

\[V_{DD} \]

\[V_{in} \]

\[X \]

\[V_{out} \]

\[M_1 \]

\[M_2 \]

\[M_3 \]

\[M_4 \]
Schmitt Trigger Simulated VTC
CMOS Schmitt Trigger (2)
Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
Multivibrator Circuits

- **Bistable Multivibrator**: flip-flop, Schmitt Trigger
- **Monostable Multivibrator**: one-shot
- **Astable Multivibrator**: oscillator
Transition-Triggered Monostable
Monostable Trigger (RC-based)

(a) Trigger circuit.

(b) Waveforms.
Astable Multivibrators (Oscillators)

Ring Oscillator

simulated response of 5-stage oscillator
Voltage Controller Oscillator (VCO)

- Current starved inverter
- Schmitt Trigger restores signal slopes

Graph showing propagation delay as a function of control voltage
Relaxation Oscillator

\[T = 2 \left(\log_3 \right) RC \]
Outline

- Bi – Stability / Meta – Stability
- Latches
- Flip – flops
- Schmitt Trigger
- Multivibrator circuits
- Counters and sequential machines
One-bit counter implementation
One-bit counter operation

- All operations are performed as s_{ϕ_2}.
- XOR computes next value of this bit of counter.
- NAND/inverter compute carry-out.
n-bit counter structure
Sequential machines

- Use memory elements to make primary output values depend on state + primary inputs.
- Varieties:
 - Mealy—outputs function of present state, inputs;
 - Moore—outputs depend only on state.
Sequential machine definition

- Machine computes next state N, primary outputs O from current state S, primary inputs I.
- Next-state function:
 - $N = \delta(I,S)$.
- Output function (Mealy):
 - $O = \lambda(I,S)$.
FSM structure
Summary

◆ Bi-stable sequential circuits
 • Latches (level sensitive circuits)
 • Flip – flops (edge triggered circuits)

◆ Non bi-stable sequential circuits
 • Schmitt Trigger (responds fast to a slowly changing input)
 • Multivibrator circuits
 ➤ Monostable (only one stable state – generates pulse of predetermined width)
 ➤ Astable (no stable states – output oscillates between two quasi stable states)