
GPU Optimised Uniform Random Number Generation

David B. Thomas and Wayne Luk
{dt10,wl}@doc.ic.ac.uk

Abstract
The recent trend for software random number gener-
ators has been to develop extremely long period gen-
erators, trading off increased memory per generator
against lowered computational cost per generated num-
ber. However, emerging fine-grain architectures such
as GPUs have a different balance of resources, offering
much cheaper computation, at the expense of smaller
and comparatively slower memories. In particular, it
is not feasible to dedicate large amounts of generator
state to each thread, as each register or portion of fast
local memory used for generator state has a direct and
negative impact on the process being driven by the ran-
dom numbers. This paper presents a random number
generation approach designed for such architectures,
which takes advantage of the fine-grain SIMD paral-
lelism, by using multiple threads to co-operatively ad-
vance a shared random number generator from which
each thread can then consume it’s own stream of num-
bers. Each thread contributes a small portion of state to
the overall generator, but the overall period is derived
from the combined state size. The proposed generator
the idea of binary linear recurrences used in many pop-
ular generator such as the Mersenne Twister, but rather
than constructing a relatively sparse recurrence matrix
optimised for FIFOs, the fine-grain parallelism is used
to construct a dense matrix, where each bit of state is
transformed on every pass.

1. Introduction

2. GPU Architecture

In this section we introduce the basic concepts and
architectures in use by current GPUs. Because each
GPU architecture has a number of differences we fo-
cus on the broad concepts rather than low-level details,
presenting an abstract conceptual model. We use the
nomenclature of CUDA, as at the time of writing this
appears to be the only well-defined language/API, but
the concepts broadly apply to both NVidia and AMD

GPUs (at least as far as they are relevant to the RNG
technique applied here).

Current GPU architectures rely on three main con-
cepts to achieve high computational performance:

Thread Batching: Multiple threads are grouped to-
gether to create warps. All threads within a warp are
scheduled and executed together, so if an instruction
must be applied to one thread in a warp, then the instruc-
tion must be executed for all threads in the warp. This is
essentially a SIMD (Single-Instruction Multiple-Data)
approach, with the standard SIMD benefits of increas-
ing the number of operations performed per instruction,
while decreasing the scheduling overhead per opera-
tion. In addition, GPUs are able to selectively control
whether the result of each operation is actually written
back to the thread state, allowing each thread in a warp
to follow a different path through the program.

High Memory Throughput: High memory throughput
is achieved by having as many memory banks as there
are threads in a warp. This allows all threads in a warp
to perform independent random memory accesses, and
as long as each thread addresses memory elements in a
different bank, then all memory operations for the warp
are executed in one pass. If two or more threads at-
tempt to access addresses located in the same bank then
a bank conflict occurs, which is automatically resolved
by servicing each thread using multiple passes. This ap-
proach is employed at two-levels: each processor has a
small dedicated local memory, providing shared storage
for all threads executing on that processor; in addition, a
much larger global memory is shared by all processors,
allowing all threads within the GPU to access the same
storage.

Thread-level parallelism: Although the ALUs and
memory systems provide high throughput, they still
have significant latencies. This varies from tens of cy-
cles for ALU operations and local memory accesses,
up to hundreds of cycles for accesses to the global
memory shared by all processors. To avoid processor
stalls, without resorting to complicated hazard detection
or speculative execution, the processor supports large
numbers of warps (groups of threads). When one warp

ALU 1
ALU 2
ALU 3
ALU 4

Cr
os
sb
ar

Cr
os
sb
ar

Warp 1 Registers
Warp 2 Registers
Warp 3 Registers

...
Warp N Registers

Bank 1
Bank 2
Bank 3
Bank 4

Wa
rp

wr
ite

Wa
rp

rea
d

Conflict
Detection

Bu
ffe
rin
g

Conflict
Resolution

Ready Queue
Running QueueRe

tire Select
Warp

Scheduling

Register File

Memory

ALUs

Figure 1. Overview of GPU architecture, using four threads per warp.

stalls, e.g. due to a read-after-write hazard or a memory
access, the processor can schedule instructions from an-
other warp. As long as the processor is given a large
enough number of warps to execute, then even the very
long latency of global memory accesses can be hidden.

Figure 1 gives an overview of the GPU architec-
ture, showing the three concepts at work. For simplicity
this model uses four threads per group, but in practi-
cal architectures this would be higher, e.g. 32 for the
NVidia GT200 series. The bottom left shows the regis-
ter file, which contains the SIMD register set for each
warp (or equivalently, contains a set of scalar registers
for the threads contained within the warp). The num-
ber of warp contexts may be fixed, as in Larabee, where
there are four warp contexts, or variable, as in NVidia
devices, where there are a fixed number of registers
which can be partitioned into a variable number of warp
contexts.

Above the register file is the instruction scheduler,
which is responsible for scheduling one of the warps
for execution in each issue slot. The scheduler main-
tains two sets of warps: a ready queue, containing those
warps which are ready to execute; and a running queue,
which lists warps that are currently stalled due to an
executing instruction that has not yet completed (the
scheduler may track true dependencies between instruc-
tions, or may just assume that any instruction in flight
stalls the warp). Once an instruction completes and is
written back to the warp context, then the warp can be
moved from the running queue back to the ready queue.

When the instruction scheduler selects a warp for
execution, the correct set of (SIMD) input registers are
selected from the warp’s context in the register file, then
dispatched to either the memory or ALUs. Both mem-
ory and ALU operations are applied to each indepen-
dent lane (thread) within the SIMD inputs, then the re-

sult is written back to the appropriate register within the
warp context. When only a subset of threads within the
warp are active, e.g. some, but not all, threads in a warp
to a branch, then the processor will only write-back the
results for those threads that are currently active.

The ALUs are likely to be pure pipelines, with
a fixed throughput and latency, but the memories will
have a variable latency. The first reason for variations is
that when threads access the shared global memory they
are competing for access with all other processors in the
GPU (and potentially with other warps in the same pro-
cessor). If the ratio of global memory accesses to com-
putation is high across the GPU, then the global mem-
ory may become a bottleneck, as the majority of the
time warps will be queueing to share access.

The second reason for variable memory latency
is due to bank conflicts. As mentioned earlier, high
memory throughput is achieved by splitting memory
into banks, allowing all threads within a warp to per-
form memory accesses in a single pass as long as each
thread’s access maps to a different bank. If multiple
threads attempt to access the same bank, then a bank
conflict occurs, and the threads must access the con-
flicted bank in a number of serial passes. In the worst
case, where all threads access the same bank, this takes
as many passes as there are threads in the warp. Bank
conflicts can occur for both local and global memory,
and can severely reduce the throughput of both memory
systems.

From this architecture we can draw a number of
guiding principles that can guide us in developing
RNGs:

1. Global memory accesses are a large potential per-
formance bottleneck, limiting scalability across
processors, and should be avoided (particularly in
library components like RNGs).

2. The only way of sharing data between threads is
via memory, and because we are avoiding global
memory, the sharing must occur via local memory.

3. To achieve high-performance all memory accesses
must have no bank conflicts.

4. Minimising the number of dedicated registers per
thread for RNGs reduces register pressure for the
rest of the application.

5. Minimising the number of dedicated registers per
thread for RNGs may also allows a larger number
of warps to execute in parallel (in NVidia archi-
tectures, for example), which allows more thread-
level parallelism and so minimises stalls in the ap-
plication.

6. Minimising the amount of local memory required
per thread for RNGs will free up more local mem-
ory space for the rest of the application, and may
also allow more warps to execute on the processor
(see previous point).

7. During memory accesses, each thread within the
warp will complete it’s access before any other
memory accesses are scheduled, so barriers are not
needed to ensure correct ordering of memory ac-
cesses between threads within a warp (however,
barriers are needed to ensure memory access or-
dering between threads in different warps).

From these we can draw a number of conclusions
about how we can create RNGs in a GPU:

• We cannot use registers to hold a large RNG state
for each thread, as it increases register pressure on
the rest of the application, and reduces the poten-
tial for warp-level parallelism.

• We cannot use local memory to hold a large RNG
state for each thread, as it would require multiple
words of shared storage per thread, and limit the
amount of shared memory available to the rest of
the application.

• There is no lack of storage in global memory, but
storing RNG state there would cause a potential
bottleneck, because each thread would have to per-
form at least one read and one write to global mem-
ory per generated number.

• The only feasible way of retaining performance
when using a large RNG state is to spread the state
across multiple threads.

• The only way for threads to share data is via mem-
ory, and for performance reasons, this must be lo-
cal memory.

• For data sharing without barriers, the RNG state
must only be shared between threads in the same
warp.

3. Generator Framework

There are a number of ways to fulfil these criteria,
but we have chosen the most direct form, where each
warp of k threads shares one RNG, using k words of
state stored in local memory (i.e. one word per thread).
On each update the threads read one or more words
from the shared state, transform these words to produce
a new word, then write this word back into the shared
RNG state. The output of the RNG is the set of words
produced after each update, resulting in k streams of
random numbers, one for each thread.

The state of the generator consists of k words with
w bits each, resulting in an n = wk bit RNG state shared
by the whole warp. The generator starts in some initial
state s0 ∈Fn

2, and after each update the state is modified,
leading to a sequence of states s1,s2, Each update is
performed by a deterministic transition function f :

si+1 = f (si), where i ≥ 0 (1)

Because the state is finite, the sequence of states must
eventually repeat, with the period p > 0 defined by:

min
p

[∃i : si+p = si] (2)

Although at the abstract level the generator uses an
n bit state with a single transition function f : Fn

2 7→ Fn
2,

the actual implementation uses k threads applying k dif-
ferent transition functions f1.. fk to k state words x1..xk:

x[i, j] = R jsi, where i ≥ 0, 1 ≤ j ≤ k (3)

x[i+1, j] = f j(si) (4)

where R j (with 1 ≤ j ≤ k) is a w×n matrix that selects
the jth contiguous w-bit word from within a vector of n
bits:

R j =
[
R[j,1] R[j,2] ... R[j,k]

]
where R[j,i] =

{
Iw, if j = i
0w, otherwise (5)

At this point we have significant freedom in how
we implement f1.. fk; all the function have to do is read
one or more words from the current state, and combine
them to create one new word for the next state. In this

w N Number of bits in each word (e.g. 32 or 64).
k N Number of threads in a warp (and no. of w-bit words in shared memory).
g N Number of banks in each RAM (k mod g = 1).
n N Number of bits in the RNG state (n = wk).
h N Number of read-shift stages used in the RNG.
si Fn

2 State of the RNG after the i’th update (si+ j = A jsi).
xi, j Fw

2 Output word from stream j after the i’th update (xi, j = R(j)si).
A Fn,n

2 matrix Binary transition matrix for the RNG.
R j Fw,n

2 matrix Reader matrix: Extracts word j from RNG state vector.
S j Fw,w

2 matrix Shift matrix: Shift left for negative j, right for positive.
W j Fw,n

2 matrix Write matrix: Determines the new value for word j in the next RNG state (xi, j = Wjsi−1).
q Nh,k matrix Entry q[i, j] is the word to be read at stage i while calculating word j.
m Fh,k,w

2 matrix Entry m[i, j] ∈ Fw
2 is the mask applied at stage i while calculating word j.

z Nh,k matrix Entry z[i, j] is the shift to be applied at stage i while calculating word j.

work we have made the choice to use binary linear oper-
ations. This is because these are both efficient to imple-
ment in GPUs, and because the theory of binary linear
RNGs is well established and has seen significant prac-
tical use. The two primitive operations for constructing
binary linear functions in a word-based architecture are
bit shifting and bit-wise masking (i.e. bit-wise and with
a constant).

We can represent shifts left or right with a set of
w×w matrices S−w..Sw, where the subscript indicates
the size of the shifts. Negative shifts correspond to a
left shift (i.e. the most significant bits are lost), while
positive shifts are unsigned right shifts. 1 We can define
the shift matrices in terms Sr and Sl , the primitive 1-bit
right and left shift operations:

Si =
{

S−i
l , if i < 0

Si
r, otherwise

(6)

where Sr (Sl) has ones on its sub-diagonal (super-
diagonal), and zeros elsewhere:

Sr =


0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 Sl =


0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
0 0 . . . 0 0


(7)

The mask operation is defined by the w-bit mask
m ∈ Fw

2 to be applied, and results in a w×w matrix Mm

1In this work we only consider logical right shifts that introduce
zeros, but arithmetic shifts that shift in the sign could also be used. We
avoided arithmetic shifts because they result in the most-significant
bits from the previous state having a much larger effect on the next
state, which is arguably the opposite of what we want.

that only allows through the selected bits:

Mm =


m[1] 0 . . . 0 0

0 m[2] . . . 0 0
...

...
. . .

...
...

0 0 . . . m[w−1] 0
0 0 . . . 0 m[w]

 (8)

Using shifts and masks we can define binary linear
generators by using multiple stages, where each stage
reads one word from the current state, which is then
masked and shifted. The results of all these stages are
reduced using exclusive-or to produce one word, build-
ing up a single w× n matrix W j, which describes the
next value of word j in terms of the current state:

W j =
h⊕

i=1

Sz[i, j]Mm[i, j]Rq[i, j] mod 2 (9)

f j(s) = W js, where f j : Fn
2 7→: Fw

2 (10)

=
h⊕

i=1

Sz[i, j]Rq[i, j]s mod 2 (11)

The equivalent C-code for the word update function f j
is shown in Listing 1 (adjusted from 1 to 0 based in-
dices).

Each generator within this framework is described
by the tuple (w,k,h,q,m,h). The first three parameters
are integer scalars defining the overall “shape” of the
generator, with w and k describing the “width” of the
update function (the degree of parallelism), and h defin-
ing the “depth” (the number of stages or iterations per
update). The other three parameters are wk×h tables of
constants, describing what operations to apply at each
of the h updates for the k words. From this tuple we can
derive the set of word update matrices W1..Wk, and so

Listing 1. Word Update Function
const unsigned Q[H][K] = {...};
const unsigned M[H][K] = {...};
const int Z[H][K] = {...};

unsigned f(unsigned j, const unsigned *s)
{

unsigned acc=0;
for(unsigned i=0;i<H;i++){
unsigned tmp=s[Q[i][j]] & M[i][j];
if(Z[i][j]<0)

tmp=tmp << -Z[i][j];
else

tmp=tmp >> Z[i][j];
acc = acc ˆ tmp;

}
return acc;

}

determine the transition matrix A for entire generator:

A =


W1
W2

...
Wk

 (12)

Within this framework it is possible to describe any
desired recurrence matrix A - each bit of each output
word can be constructed in at most n steps, by select-
ing the (at most n) source bits one-by-one, then shifting
them into the correct position. To construct the whole
output word this must be repeated w times, so up to
h = wn = w2k stages might be required. In practise the
number of stages would probably be much lower, but
the idea is not to pick a matrix A, then find the best gen-
erator that produces it; instead, we define a family of
generators, then try to find one that produces the best
matrix A.

4. Generator Parametrisation

There are three competing concerns when defin-
ing the parameter space. First, we wish to maximise
the possibility of finding maximum period generators
- if we define a very small search space then it may
not contain any such generators, while if we define an
enormous search space the probability of finding them
may be very low. Second, we want to maximise the
statistical quality, by reducing the risks of intra- and
inter-stream correlations. Finally, we need to maximise
performance, by reducing the number of operations re-
quired per transformation. In this section we explain
how we have attempted to balance these competing con-
cerns, by defining a search space that strikes an accept-
able balance between all three.

There are a number of necessary (but not sufficient)
conditions for a finding maximal period generators. The
simplest is that every bit of the current state must be
used at least once in the construction of the next state (in
the simplest scenario, one bit in the next state is a direct
copy of a bit from the previous state). In terms of the
matrix A, this means that each column of A cannot be
all zero. Another trivial requirement is that every bit in
the next state must be formed from some combination
of bits in the previous state: no row of A can be all
zero. A more complex requirement is that each bit in
the current state must eventually effect all bits in some
future state: informally it must be possible to “get to”
each bit from every other bit, or more formally:

∀ j, j′ ∈ 1..k : ∃i > 1 : Ai[j, j′] = 1 (13)

We can meet these conditions by ensuring that we
restrict the search space according to the following con-
ditions:

sort(q[i]) = 1..k (14)
q[i, j] 6= q[i′, j] (15)

m[1, j] = m[2, j] = [11...11]T (16)
d−w/2e< z[1, j] < 0 (17)

0 < z[2, j] < bw/2c (18)
i 6= i′ → (q[i, j] = q[i′, j]↔ z[i, j] 6= z[i′, j]) (19)

where 1 ≤ i, i′ ≤ h and 1 ≤ j ≤ k.
The first two constraints ensure that each state word

is read exactly once in each stage (i.e. q[1] and q[2] are
permutations of the integers 1..k), and that no thread
reads the same word in multiple stages. The next con-
straint specifies that no masking occurs in the first two
rounds, so the words are passed straight through. Con-
straints four and five ensure that all threads apply a left
shift in the first stage, and a right shift in the second
stage, with the total shift less than half the word width
in both cases.

The first five constraints ensure that each new word
is constructed from the top and bottom bits of two dif-
ferent words, and that every bit from the previous state
is introduced into the new state by the first two stages.
In addition, it guarantees that each new word contains
an overlap, so there is at least minimal mixing of bits
from previous states. The final constraint ensures that
this mixing cannot be undone by future stages, by stat-
ing that the pairs of sources and shifts used in the first
two stages are never used again.

These conditions provide a search space that is rea-
sonably likely to contain maximal period generators,
but we still have a number of free parameters. We now
define three different classes of generator, which vary

in the degree of expected statistical quality, and in the
performance characteristics.

5. Evaluating Generators

The RNG template suggested in the previous sec-
tion has a large number of free parameters, all of which
must be chosen in a way that both provides maxi-
mum period, and produces a high-quality stream. Find-
ing maximum period generators is actually rather easy:
randomly selecting generators from a search space re-
sults in a maximum period generator in minutes (for
n ≤ 2048), so a large number of potential RNGs can be
quickly generated by using multiple CPUs in parallel.

However, selecting the “best” generators from
within this set of maximum period generators is more
difficult. For typical architectures (e.g. k ≥ 16, w ≥ 32,
n > 512) the generators are effectively equivalent from
the viewpoint of empirical batteries of tests such as
Crush and Big-Crush - all tests are passed convincingly,
except for the Matrix Rank and Linear Complexity tests
which all linear generators fail. Increasing the number
of samples tested is also not an option, as running Big-
Crush already takes hundreds of times longer than find-
ing a maximum-period generator.

If we want some means of comparing generators
we have to turn to theoretical measures of quality,
which provide some kind of quality metric based on the-
ory, rather than by looking at streams of random num-
bers. The standard metric for binary linear generators is
equidistribution, which measures the “even-ness” of the
generator’s entire output sequence, when successive tu-
ples are treated as multi-dimensional points. However,
equidistribution usually assumes only one sample per
update step, so it needs to be modified to support the
parallel output streams of a GPU based generator.

5.1. Equidistribution for Multi-Stream RNGs

Equidistribution is a theoretical measure of random
number generator quality, which considers the prop-
erties of small sub-sequences of the generator’s entire
output stream: even though the generator may have a
period of 21024 − 1, we can still use equidistribution to
say something meaningful about the quality of all out-
puts without having to generate and examine the entire
stream (which is clearly impractical). It is important
to bear in mind that equidistribution can not guarantee
quality at a local level within the stream, but in general
better equidistribution at a global level tends to result in
better quality at a local level.

An intuitive explanation of (t, l) equidistribution is
to consider a concrete case: consider a generator which

contains n = 512 state bits, has a maximal period of
2512−1, and produces an output stream of w = 32 bits.
If we determine that this generator is is distributed to
full resolution (i.e. l = 32) over 20 dimensions (t = 20),
then the generator is able to produce every possible sub-
sequence of 20 words, and every possible 20 word sub-
sequence occurs exactly the same number of times dur-
ing the entire An alternate view is that if an observer
sees 19 consecutive outputs of the generator, they are
completely unable (by any means, no matter how com-
plicated) to predict anything about the next output word.
However, a sequence of 20 numbers does allow the ob-
server to say something about the next (although not
necessarily to predict it exactly). Similarly, if the gen-
erator is equidistributed to a resolution of l = 2 with
dimension t = 250, then the two most significant bits of
each 250 word sub-sequence will take on every possible
pattern over the entire sequence of the generator.

The standard approach is to find generators where
∆∞ = ∆1 = 0, which are called maximally equidis-
tributed (ME) RNGs. However it is not always possi-
ble to find ME RNGs, either because none exist within
some exhaustively searched parameter space, or be-
cause ME parametrisations are so infrequent that it is
impossible to find one by random search. In these cases
the informally observed standard has been to search for
generators with the lowest values of ∆∞, then to choose
from within that set the generator(s) with the lowest ∆1
(i.e. sort first by worst-case gap, then sort by sum of
gaps).

However, looking just at the gaps ignores the rel-
ative importance of gaps at different resolutions. If
we consider the case where k = 32,w = 32, then the
maximum possible dimension at l = 2 and l = 32 are
t∗2 = 512 and t∗32 = 32. If we are now told that a gen-
erator has ∆∞ = 16, we really need to know at which
resolution this gap occurs: if the worst case occurs for
l = 2 then the generator is still equidistributed over 496
dimensions, or 97% of the maximum possible, while if
the worst case occurs for l = 32 then the generator only
achieves 50% of the maximum possible. Clearly it is in
some sense more optimal if the same size gap appears
at lower resolutions.

The parameter space we have defined for GPU gen-
erators does not produce ME RNGs, even for very large
searches, but it does produce many generators with
∆∞ = 1 and small values of ∆1. To select the “best”
generator from among these generators we use a met-
ric which provides a single score, taking into account
both the size of the dimension gaps, and the resolution

at which they occur:

G =−
l=w

∑
l=1

ln(tl/t∗l) (20)

This score behaves intuitively, providing a non-negative
score for all generators, with a minimum score of zero
iff the generator is ME. In addition, it distinguishes be-
tween generators with identical values of ∆∞, assigning
lower scores when gaps occur at lower resolutions.

Another complication when considering the
equidistribution of multiple streams from an RNG is
that not all streams have the same equidistribution -
one stream may be ME, but another might have a large
dimension gap. For this reason we actually calculate
the equidistribution across each stream, then use the
dimension gap of the worst stream at each resolution.
This means that when we quote the equidistribution for
GPU generators, we are stating that each stream has
that level of equidistribution or better.

The standard equidistribution methodology works
well for existing software generators, because only one
w-bit word from each successive generator state is re-
turned, so only the distribution of those w bits is im-
portant. The equidistribution of most GPU generators
also appears to be intrinsically quite good, with typical
values of ∆∞ from 2 to 5 for randomly selected gen-
erators with k = 32,w = 32 (n = 1024). However, in
the generators suggested here, all n bits of the generator
are consumed after every update, which presents a more
worrying prospect than correlations within the stream.
Consuming all k state words from the recurrence is key
to the performance of the GPU generator, but also its
biggest potential weakness, so we need to minimise the
risk of inter-word correlations.

5.2. Mutual Equidistribution as a Measure of
Stream Correlation

The conventional measure of equidistribution looks
at the distribution of the l most significant bits of one
word over t successive outputs, but we can extend this
to the multi-word case by also considering the distribu-
tion across all k words. This adds an extra dimension
to the existing t dimensional partition, with k (rather
than l) possible values, so the number of partitions in-
creases from 2tl to k2tl . If each cell in this extended
partition contains the same number of tuples, then we
consider the generator to be (t, l)k distributed, or mutu-
ally equidistributed.

An alternate way of looking at this is to take the
l most significant bits from each of the GPU RNG’s k
output streams (state words), and to concatenate them to
create a new stream of lk-bit words. If (and only if) this

Listing 2. Correlated RNG
unsigned CorrelatedRng(unsigned j, unsigned *s)
{
sync();
unsigned acc=(s[Q[0][j]]<< Z0)ˆ(s[Q[1][j]] >> Z1[j]);
sync();
return (s[j]=acc);

}

new stream is (t, lk)-distributed, then the generator’s k
output streams are also (t, l)k-distributed.

For a given resolution l the maximum possible di-
mension t for which an unbuffered generator can be
(t, l)k distributed is:

t∗l,k = bn/lkc= bw/lc (21)

This means that t∗1,k = w, so (all other things being
equal) architectures using 64-bit words have an advan-
tage over those using 32-bit words, at least in terms of
mutual equidistribution.

In a buffered generator (where state is stored in reg-
isters as well as shared memory), the maximum possible
mutual equidistribution is increased. If r is the number
of state registers per generator, then the maximum pos-
sible dimension increases to:

t∗l,k = bn/lkc= wk(1+ r)/lkbw(1+ r)/lc (22)

This means that adding one state register doubles the
maximum possible dimension, while adding three reg-
isters quadruples it.

6. Generator Families

It is now possible to define a number of genera-
tor families, which provide different performance and
quality characteristics, and within which it is reason-
ably likely to be able to find generators through random
search.

6.1. Correlated RNG

The first class of generator simply fixes h = 2, so
only includes the two stages necessary to achieve max-
imal period. This represents the absolute minimal gen-
erator possible, both in terms of memory operations and
bit-wise operations: two reads, two shifts, an exclusive-
or, and one write. The big drawback of this generator is
that the most and least significant bits of each new word
are a verbatim copy of bits from a word in the previous
state.

Figure 2 illustrates this problem: because we re-
quire both a left and a right shift to create a full-period

a0 a1 a2 a3 a4 a5 a6 a7

a5^b0

b0 b1 b2 b3 b4 b5 b6 b7

x ^ y

a3 a4 a6^b1 a7^b2 b3 b4 b5

a3 a4 a5 a6 a7 0 0 0 b0 b1 b2 b3 b4 b50 0

x<<3 x>>2

Figure 2. When forming a new word from just
two shifted words, the top and bottom bits are
direct copies of bits from the previous word.

generator, only the central bits of the new word are
“new”. Both the most significant and least significant
bits will already have been consumed by another thread,
so there is a significant risk that an unwanted correla-
tion will be introduced between supposedly indepen-
dent threads. For example, if treated as random bits,
the hamming weight of the new word will be strongly
correlated with the hamming weights of the two source
words. More worryingly, if the words are treated as in-
tegers, then the new integer will be very strongly cor-
related with the first (left shifted) source word modulo
some binary power, i.e. xi+1, j and xi,q[1, j] mod 2w−z[1, j]

will be very correlated.
Whether this correlation between streams is im-

portant is completely dependent on the consuming ap-
plication. In cases where the threads are very unsyn-
chronised, for example if each thread is independently
executing multiple independent simulation runs with a
variable number of time-steps, then the correlation may
have no detectable effect. In these cases it may be
worth using the correlated generator, as it is extremely
fast, and the quality of each individual stream is very
good. However, if the threads are working together
on one simulation, or are starting and executing inde-
pendent simulations in lock-step (for example, generat-
ing fixed-length time-series), then the correlation could
completely ruin the results in an obvious way (the best
case), or subtly corrupt the results in a difficult to detect
way (the more worrying case).

The probability of finding a full period generator
seems to be related to the hamming weight of the re-
currence matrix A: more ones in the matrix increases
the probability of a primitive characteristic polynomial.
This presents a problem when looking for correlated
generators with large left and right shifts, as the result-
ing matrix is very sparse, so only a very small fraction
of candidate generators are actually full period. One so-
lution is to restrict the shifts to small values (between 1
and 3), but this has a serious effect on mutual equidistri-
bution - it is not uncommon to find generators that have

Listing 3. Three Input RNG
unsigned ThreeInputRng(unsigned j, unsigned *s)
{
sync();
unsigned acc=(s[Q[0][j]] << Z0) ˆ (s[Q[1][j]] >> Z1[j]);
acc ˆ= s[Q[2][j]];
// Alternate: Could also shift extra input
// acc ˆ= s[Q[2][j]] << Z2;
// Optional: Could extend to four input, etc.
// acc ˆ= s[Q[3][j]];
sync();
return (s[j]=acc);

}

Listing 4. Slow Memory RNG
unsigned SlowMemoryRng(unsigned j, unsigned *s)
{
sync();
unsigned t0=s[Q[0][j]], t1=s[Q[1][j]];
unsigned acc=(t0 << Z0[j]) ˆ (t1 >> Z1);
acc ˆ= t0 ˆ t1;
// Alternate: shift each word in opposite direction
// acc ˆ= (t0 >> Z2) ˆ (t1 << Z3);
// Alternate: second stage using masking
// acc ˆ= (t0 & MASK) | (t1 & ˜MASK);
sync();
return (s[j]=acc);

}

close to the worst possible mutual equidistribution.

6.2. Three Input RNG

One relatively cheap way to improve the correla-
tion problem is to introduce a third input to the func-
tion. Because the first two samples have already intro-
duced the shifting required for maximum period, we can
choose not to shift this third input. The result is that
both the most and least significant bits are a mixture of
bits from two different streams, while the middle bits
are a mixture from three streams.

This approach can be generalised to four or more
input RNGs, simply by adding more and more un-
shifted stages to the generator. The cost of each stage
is one memory lookup, one exclusive-or, and one con-
stant register to hold the source index, so this solution
is ideal for architectures where memory reads are cheap
(e.g. NVidia architectures).

6.3. Slow Memory Rng

The multi-input solution to the correlation prob-
lem is only efficient when memory reads are cheap,
which may not be the case in some architectures. When

Listing 5. Iterated RNG
unsigned IteratedRng(unsigned j, unsigned *s)
{

CorrelatedRng(j,s);
return CorrelatedRng(j,s);

}

logic operations are much cheaper than memory ac-
cesses, it may make more sense to read just two inputs
from memory, but then to re-use each input in multiple
stages. For example, after the initial left and right shift
of the first and second inputs (required for maximum
period), the two inputs can then be xor’d directly into
the result without any shifting.

A more expensive alternative, would be to apply
shifts in the second stage, moving the words in the op-
posite direction to the first stage. This would mean that
bits from each input end up further from each other in
the final value. Another alternate would be to use a
bit-mask to interleave bits from the two words without
shifting, although it is not clear why this would be a
better option, as it has the same cost but results in less
mixing.

6.4. Iterated RNG

Another way of reducing correlations between
streams is to perform two update passes per generated
random number: in the simplest case this could just
mean executing CorrelatedRng twice instead of once
before returning a random number to the application.
Because gcd(2,2n−1) = 1 the resulting random stream
will still have period 2n − 1, but each output word will
be constructed from four of the previous output words,
and the most and least significant bits will be combined
from two previous words.

A more sophisticated alternative is to perform mul-
tiple passes with different sources and shifts, but to treat
the combination of the two passes as a single transi-
tion: if the first pass applies matrix A(0) and the sec-
ond applies A(1), then we just need to check whether
A = A(0)A(1) has a primitive characteristic polynomial.

The iterated method only really makes sense if both
memory reads and writes are very fast: a standard four
input rng is able to provide a similar amount of mixing,
without needing to perform the extra intermediate write.
This approach also requires twice the amount of syn-
chronisation, so in architectures where this is not free
there will be a significant overhead.

Listing 6. BufferedRNG
unsigned BufferedRng(unsigned j, unsigned *s)
{
// stored in register between invocations
static unsigned buff;

sync();
unsigned t0=s[Q[0][j]], t1=s[Q[1][j]];
unsigned acc=buff;
acc ˆ= (t0<<Z0[j]) ˆ (t1>>Z1);
// Save a different value for the next iteration
buff = s[Q[2][j]];
// Alternate: Less memory reads, more operations
// buff=(t0>>Z2) ˆ (t1<<Z3);
sync();
return (s[j]=acc);

}

6.5. Buffered RNG

So far we have stayed within the framework out-
lined in section (TODO): all state is stored in shared
memory, and with each thread performing multiple
reads and one or more writes to transform this state.
In this approach the state size (i.e. period) is directly
limited to the number of threads co-operating in each
RNG, as there is one word per thread. In general RNGs
with larger states are better, both intuitively, and as mea-
sured by equidistribution (see section TODO). In princi-
ple we could simply increase the number of threads per
RNG, but this has two disadvantages. The first is that
if the number of threads is greated than the architec-
ture’s natural warp size, then all the memory synchroni-
sation between threads no longer comes for free; for ex-
ample, on NVidia GPUs the synchronisation must now
be performed explicitly using syncthreads(), ef-
fectively adding two extra instructions to the execution
time.

The second disadvantage is that while increas-
ing the period of the generator increases the qual-
ity of each individual stream, it does nothing to re-
duce the correlations between the streams. In sec-
tion (TODO) it is shown that the maximum achiev-
able mutual-equidistribution (a measure of stream inde-
pendence) does not increase as the number of threads
increases. Because correlations are the key potential
weakness of this type of generator, and the quality of
the individual streams is already very good, it makes
little sense to attempt to increase RNG period without
also trying to decrease stream correlation.

One solution to this problem is to note that state can
also be held in thread-local registers, which increases
the overall state size and period length of the RNG,
without requiring more shared memory or more threads

per RNG. The simplest approach is the BufferedRng ap-
proach shown in Listing 6, which uses one register per
thread to double the RNG state size. The basic struc-
ture is similar to the Three Input RNG, where we take
the minimal Correlated RNG and introduce a third in-
put to fix the most and least significant bits. However,
instead of taking the third input from the current state,
it actually comes from the previous state.

There is significant freedom in what exactly is
saved in the register, with the simplest and cheapest op-
tion being to just save one of the inputs verbatim. At the
expense of one exclusive-or, the combination of both
inputs can be saved, or a completely independent input
could be read and saved.

6.6. Additional Possibilities

Introducing state registers to the RNG opens up
many possibilities, for improving quality and increas-
ing period. For example, multiple levels of registers can
be introduced per thread to create short FIFOs, greatly
increasing the RNG period. Using three registers per
thread would quadruple both the period of the gener-
ator, and quadruple the maximum achievable mutual-
equidistribution.

Using registers also addresses one of the problems
of creating very long period RNGs: in order to verify
that an RNG has maximum period, we must know the
exact factorisation of 2n − 1. Unfortunately, for con-
venient values of n > 2048 we do not have complete
factorisations. For example, in an NVidia architecture
(where g = 32 and w = 32) adding three state registers
per thread would result in a state size of n = 4096, but
the complete factorisation of 24096 − 1 is currently un-
known 2

One way of approaching this is to only use a part of
the values stored in the register FIFOs, either by shift-
ing or masking some of the bits out. For example, a
bit mask could be used so that only subset of the bits
from the previous state are stored in the extra registers;
the mask would have to contain ones in the most and
least significant bits to remove direct copying of bits,
but some of the middle bits could be zeros. This allows
the effective size of the state to be reduced to a value of
n for which the factorisation is available, such as 23900.

7. Generators

8. Appendix

2Unknown at the time this paper was written: better factorisa-
tion algorithms and increasing computational power allow ever larger
Mersenne numbers to be factorised.

